In this Letter,a new approach of optical tape for high capacity multilayer data storage is proposed.We show that a length of 5 cm and width of 2 cm of soft and transparent optical tape can be used for two-photon three...In this Letter,a new approach of optical tape for high capacity multilayer data storage is proposed.We show that a length of 5 cm and width of 2 cm of soft and transparent optical tape can be used for two-photon three-dimensional bit data storage.We successfully demonstrate writing and reading of six layers of data storage with a transverse bit separation of 2μm and an axial separation of 2.5μm in a tetraphenylethylene-doped photobleaching polymer.The fluorescence intensity is insensitive to the storage depth of the photopolymer matrix.Thus,the optical tape that we put forward in the experiment can help people realize true large data storage in the future,like magnetic tape.This method significantly paves a novel way for solving big data storage problems.展开更多
Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic ...Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic techniques vastly en-hancing the feasibility of applying polarization channels,the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process,which gravely hindered the utilization of this technique in practice.In this paper,we demonstrate an ultra-low crosstalk polarization-en-coding multilayer ODS technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocom-posite film involving highly aligned gold nanorods(GNRs).With parallelizing the gold nanorods in the recording medium,the information carrier configuration minimizes miswriting and misreading possibilities for information input and output,respectively,compared with its randomly self-assembled counterparts.The enhanced data accuracy has significantly im-proved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99.It is anticipated that the demon-strated technique can facilitate the development of multiplexing ODS for a greener future.展开更多
Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)...Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)years is attained with single ultrafast laser pulse induced reduction of Eu^(3+)ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm^(2).Furthermore,the active ions of Eu^(2+)exhibit strong and broadband emission with the full width at half maximum reaching 190 nm,and the photoluminescence(PL)is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses.The developed technology and materials will be of great significance in photonic applications such as long-term ODS.展开更多
Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing...Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing. The light-induced phase transition is the key for this technology. Traditional understanding on the role of light is the heating effect. Generally, the RESET operation of phase-change memory is believed to be a melt-quenching-amorphization process. However, some recent experimental and theoretical investigations have revealed that ultrafast laser can manipulate the structures of phase-change materials by non-thermal effects and induces unconventional phase transitions including solid-to-solid amorphization and order-to-order phase transitions. Compared with the conventional thermal amorphization,these transitions have potential superiors such as faster speed, better endurance, and low power consumption. This article summarizes some recent progress of experimental observations and theoretical analyses on these unconventional phase transitions. The discussions mainly focus on the physical mechanism at atomic scale to provide guidance to control the phase transitions for optical storage. Outlook on some possible applications of the non-thermal phase transition is also presented to develop new types of devices.展开更多
We introduce a high-density three-dimensional optical data storage approach by using a pyrryl-sub-stituted fulgide photochromic material with a method of single-beam two-photon recording and fluorescence confocal read...We introduce a high-density three-dimensional optical data storage approach by using a pyrryl-sub-stituted fulgide photochromic material with a method of single-beam two-photon recording and fluorescence confocal readout. The detailed information about the photochromic material and the experimental setup are presented. The experiments about multi-layered recording and readout are carried out with a 100-μm-thick transparent photochromic material film. The results show that the lateral resolution is better than 1 μm, and the longitudinal resolution is about 3 μm. Besides, the readout times for the recorded data aredesirable when using a readout laser power smaller than 5 mW.展开更多
The advance of nanophotonics has provided a variety of avenues for light–matter interaction at the nanometer scale through the enriched mechanisms for physical and chemical reactions induced by nanometer-confined opt...The advance of nanophotonics has provided a variety of avenues for light–matter interaction at the nanometer scale through the enriched mechanisms for physical and chemical reactions induced by nanometer-confined optical probes in nanocomposite materials.These emerging nanophotonic devices and materials have enabled researchers to develop disruptive methods of tremendously increasing the storage capacity of current optical memory.In this paper,we present a review of the recent advancements in nanophotonics-enabled optical storage techniques.Particularly,we offer our perspective of using them as optical storage arrays for next-generation exabyte data centers.展开更多
The possibility to achieve unprecedented multiplexing of light-matter interaction in nanoscale is of virtue importance from both fundamental science and practical application points of view. Cylindrical vector beams(C...The possibility to achieve unprecedented multiplexing of light-matter interaction in nanoscale is of virtue importance from both fundamental science and practical application points of view. Cylindrical vector beams(CVBs) manifested as polarization vortices represent a robust and emerging degree of freedom for information multiplexing with increased capacities. Here, we propose and demonstrate massivelyencoded optical data storage(ODS) by harnessing spatially variant electric fields mediated by segmented CVBs. By tight focusing polychromatic segmented CVBs to plasmonic nanoparticle aggregates, recordhigh multiplexing channels of ODS through different combinations of polarization states and wavelengths have been experimentally demonstrated with a low error rate. Our result not only casts new perceptions for tailoring light-matter interactions utilizing structured light but also enables a new prospective for ultra-high capacity optical memory with minimalist system complexity by combining CVB’s compatibility with fiber optics.展开更多
Two novel quadrupolar organic compounds, 3-(4-((E)-2-(9-butyl-9H-carbazol-6-yl) vinyl)styryl)-9-propyl-9H-carbazole (BCSPC) and 3-(3-(3-((1E)-2-(4-((E)-2-(3-(3,5-bis(9-butyl-9H-carbazol-6-yl)phenyl)-9-butyl-9H-carbazo...Two novel quadrupolar organic compounds, 3-(4-((E)-2-(9-butyl-9H-carbazol-6-yl) vinyl)styryl)-9-propyl-9H-carbazole (BCSPC) and 3-(3-(3-((1E)-2-(4-((E)-2-(3-(3,5-bis(9-butyl-9H-carbazol-6-yl)phenyl)-9-butyl-9H-carbazol-6-yl)vinyl)phenyl) vinyl)-9-butyl-9H-carbazol-6-yl)-5-(9-butyl-9H-carbazol-6-yl)phenyl)-9-butyl-9H-carbazole (BCPBC), with different conjugated arms, have been designed and synthesized. Their one-and two-photon absorption (TPA) and excited fluorescence properties have been experimentally investigated. The two-photon absorption cross-sections of two compounds were estimated by two-photon excited fluorescence technique using 200 fs, 76 MHz, Ti:sapphire laser, which are 22 and 154 GM for BCSPC and BCPBC, respectively. The optimal excitation wavelengths are 780 nm for both BCSPC and BCPBC. A data recording experiment proved the potential application of the materials.展开更多
The ongoing quest for higher data storage density has led to a plethora of innovations in the field of optical data storage.This review paper provides a comprehensive overview of recent advancements in next-generation...The ongoing quest for higher data storage density has led to a plethora of innovations in the field of optical data storage.This review paper provides a comprehensive overview of recent advancements in next-generation optical data storage,offering insights into various technological roadmaps.We pay particular attention to multidimensional and superresolution approaches,each of which uniquely addresses the challenge of dense storage.The multidimensional approach exploits multiple parameters of light,allowing for the storage of multiple bits of information within a single voxel while still adhering to diffraction limitation.Alternatively,superresolution approaches leverage the photoexcitation and photoinhibition properties of materials to create diffraction-unlimited data voxels.We conclude by summarizing the immense opportunities these approaches present,while also outlining the formidable challenges they face in the transition to industrial applications.展开更多
The optical storage characteristics of a new kind of organic photochromic material棗pyrrylfulgide were experimentally investigated in the established parallel optical data storage system. Using the pyrrylfulgide/PMMA ...The optical storage characteristics of a new kind of organic photochromic material棗pyrrylfulgide were experimentally investigated in the established parallel optical data storage system. Using the pyrrylfulgide/PMMA film as a photon-mode recording medium, micro-images and encoded binary digital data were recorded, readout and erased in this parallel system. The storage density currently reaches 3?07 bit/cm2. The recorded information on the film can be kept for years in darkness at room temperature.展开更多
The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to...The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage meth- ods in the information storage as well as information proc- essing.展开更多
A kind of optical data storage medium based on electron-trapping materials,Y_(3)Al_(5)O_(12):Ce^(3+)fluorescent ceramic,was developed by vacuum sintering technology.The medium shows sufficiently deep traps[1.67 and 0....A kind of optical data storage medium based on electron-trapping materials,Y_(3)Al_(5)O_(12):Ce^(3+)fluorescent ceramic,was developed by vacuum sintering technology.The medium shows sufficiently deep traps[1.67 and 0.77 eV].The properties of trap levels were researched by thermoluminescence curves,and the optical storage mechanism based on Ce^(3+)ion doping was proposed.More importantly,the data can be written-in by 254 nm UV light,and readout by heating[300°C].This work expands the application fields of fluorescent ceramics,and it is expected to promote the development of electron-trapping materials.展开更多
Fast response,high luminescence contrast,three-dimensional(3D)storage,and nondestructive reading are key factors for the optical storage application of photochromic materials.Femtosecond(fs)laser direct writing techno...Fast response,high luminescence contrast,three-dimensional(3D)storage,and nondestructive reading are key factors for the optical storage application of photochromic materials.Femtosecond(fs)laser direct writing technology with multiphoton nonlinear absorption is becoming a useful tool for microprocessing functional units in the 3D space of glass owing to its remarkable advantages,such as a fast processing speed and high processing accuracy.Herein,the photochromism of transparent glass codoped with rare-earth ions was investigated under 800-nm fs laser irradiation,affording a fast response.The photochromic glass achieves an upconversion luminescence(UCL)modification of 92%.The photochromic glass can be bleached back to its original color using heat treatment.The transmittance and UCL modification show excellent reproducibility under alternating stimulations between 800-nm fs laser irradiation and heat treatment.The data can be written in the interior of the transparent photochromic glass using 800-nm fs laser irradiation,facilitating 3D information storage.These results suggest that the 800-nm fs laser irradiation-subjected photochromic glass is an ideal optical data storage medium.展开更多
Holographic data storage system (HDSS) has been a good candidate for a volumetric recording technology, due to their large storage capacities and high transfer rates, and have been researched for tens of years after...Holographic data storage system (HDSS) has been a good candidate for a volumetric recording technology, due to their large storage capacities and high transfer rates, and have been researched for tens of years after the principle of holography was first proposed. However, these systems, called conventional 2-axis holography, still have essential issues for commercialization of products. Collinear HDSS, in which the information and reference beams are modulated co-axially by the same spatial light modulator (SLM), as a new read/write method for HDSS are very promising. With this unique configuration, the optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. Collinear holography can produce a small, practical HDSS more easily than conventional 2-axis holography. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography.展开更多
A novel diarylethene,namely 4,5-(2,5-dimethyl thiophene) phthalimide,was synthesized and successfully introduced to rewritable holographic data storage.Upon the alternative illumination of UV and visible light(>400...A novel diarylethene,namely 4,5-(2,5-dimethyl thiophene) phthalimide,was synthesized and successfully introduced to rewritable holographic data storage.Upon the alternative illumination of UV and visible light(>400 nm),this compound underwent rapid,reversible inter-conversion between colorless open-ring isomer and yellow-green ring-closed form in both solution and polymethyl methacrylate(PMMA) film.Subsequently,we investigated the characteristics of volume homographic recording of the diarylethene-doped PMMA film(1 m thick).The maximum refractive index modulation(0.87‰) of the film during recording could be reached within just 120 s which gave the ability of fast recording.The high quality reconstruction after 50 write/erase cycles demonstrated its excellent fatigue-resistance and high resolution.All those results indicated that this molecule was a reliable fast write/erase holographic storage material.展开更多
基金This work was supported by the National Key Research and Development Program of Ministry of Science and Technology(No.2018YFB0704100)the Shanghai Science and Technology Commission Project(Nos.18DZ1100402 and 16511101600).
文摘In this Letter,a new approach of optical tape for high capacity multilayer data storage is proposed.We show that a length of 5 cm and width of 2 cm of soft and transparent optical tape can be used for two-photon three-dimensional bit data storage.We successfully demonstrate writing and reading of six layers of data storage with a transverse bit separation of 2μm and an axial separation of 2.5μm in a tetraphenylethylene-doped photobleaching polymer.The fluorescence intensity is insensitive to the storage depth of the photopolymer matrix.Thus,the optical tape that we put forward in the experiment can help people realize true large data storage in the future,like magnetic tape.This method significantly paves a novel way for solving big data storage problems.
基金financial supports from the National Natural Science Foundation of China(Grant Nos.62174073,61875073,11674130,91750110 and 61522504)the National Key R&D Program of China(Grant No.2018YFB1107200)+3 种基金the Guangdong Provincial Innovation and Entrepren-eurship Project(Grant No.2016ZT06D081)the Natural Science Founda-tion of Guangdong Province,China(Grant Nos.2016A030306016 and 2016TQ03X981)the Pearl River Nova Program of Guangzhou(Grant No.201806010040)the Technology Innovation and Development Plan of Yantai(Grant No.2020XDRH095).
文摘Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic techniques vastly en-hancing the feasibility of applying polarization channels,the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process,which gravely hindered the utilization of this technique in practice.In this paper,we demonstrate an ultra-low crosstalk polarization-en-coding multilayer ODS technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocom-posite film involving highly aligned gold nanorods(GNRs).With parallelizing the gold nanorods in the recording medium,the information carrier configuration minimizes miswriting and misreading possibilities for information input and output,respectively,compared with its randomly self-assembled counterparts.The enhanced data accuracy has significantly im-proved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99.It is anticipated that the demon-strated technique can facilitate the development of multiplexing ODS for a greener future.
基金supports from the National Key R&D Program of China (No. 2021YFB2802000 and 2021YFB2800500)the National Natural Science Foundation of China (Grant Nos. U20A20211, 51902286, 61775192, 61905215, and 62005164)+2 种基金Key Research Project of Zhejiang Labthe State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)China Postdoctoral Science Foundation (2021M702799)。
文摘Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)years is attained with single ultrafast laser pulse induced reduction of Eu^(3+)ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm^(2).Furthermore,the active ions of Eu^(2+)exhibit strong and broadband emission with the full width at half maximum reaching 190 nm,and the photoluminescence(PL)is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses.The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61922035 and 11904118)
文摘Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing. The light-induced phase transition is the key for this technology. Traditional understanding on the role of light is the heating effect. Generally, the RESET operation of phase-change memory is believed to be a melt-quenching-amorphization process. However, some recent experimental and theoretical investigations have revealed that ultrafast laser can manipulate the structures of phase-change materials by non-thermal effects and induces unconventional phase transitions including solid-to-solid amorphization and order-to-order phase transitions. Compared with the conventional thermal amorphization,these transitions have potential superiors such as faster speed, better endurance, and low power consumption. This article summarizes some recent progress of experimental observations and theoretical analyses on these unconventional phase transitions. The discussions mainly focus on the physical mechanism at atomic scale to provide guidance to control the phase transitions for optical storage. Outlook on some possible applications of the non-thermal phase transition is also presented to develop new types of devices.
基金This work was supported by the National Key Basic Research Project (Grant No. G19990330).
文摘We introduce a high-density three-dimensional optical data storage approach by using a pyrryl-sub-stituted fulgide photochromic material with a method of single-beam two-photon recording and fluorescence confocal readout. The detailed information about the photochromic material and the experimental setup are presented. The experiments about multi-layered recording and readout are carried out with a 100-μm-thick transparent photochromic material film. The results show that the lateral resolution is better than 1 μm, and the longitudinal resolution is about 3 μm. Besides, the readout times for the recorded data aredesirable when using a readout laser power smaller than 5 mW.
基金The authors thank the Australian Research Council for its support through the Laureate Fellowship project(FL100100099).
文摘The advance of nanophotonics has provided a variety of avenues for light–matter interaction at the nanometer scale through the enriched mechanisms for physical and chemical reactions induced by nanometer-confined optical probes in nanocomposite materials.These emerging nanophotonic devices and materials have enabled researchers to develop disruptive methods of tremendously increasing the storage capacity of current optical memory.In this paper,we present a review of the recent advancements in nanophotonics-enabled optical storage techniques.Particularly,we offer our perspective of using them as optical storage arrays for next-generation exabyte data centers.
基金the financial support from the National Key R&D Program of China (2018YFB1107200)the National Natural Science Foundation of China (91750110, 11674130, 61605061, 11674110 and 11874020)+2 种基金the Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081)the Natural Science Foundation of Guangdong Province (2016A030306016, 2016TQ03X981 and 2016A030308010)Pearl River S and T Nova Program of Guangzhou (201806010040)。
文摘The possibility to achieve unprecedented multiplexing of light-matter interaction in nanoscale is of virtue importance from both fundamental science and practical application points of view. Cylindrical vector beams(CVBs) manifested as polarization vortices represent a robust and emerging degree of freedom for information multiplexing with increased capacities. Here, we propose and demonstrate massivelyencoded optical data storage(ODS) by harnessing spatially variant electric fields mediated by segmented CVBs. By tight focusing polychromatic segmented CVBs to plasmonic nanoparticle aggregates, recordhigh multiplexing channels of ODS through different combinations of polarization states and wavelengths have been experimentally demonstrated with a low error rate. Our result not only casts new perceptions for tailoring light-matter interactions utilizing structured light but also enables a new prospective for ultra-high capacity optical memory with minimalist system complexity by combining CVB’s compatibility with fiber optics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50532030, 20771001, 20775001 and 50873001)the National Natural Science Foundation of Anhui Province (Grant No. 070414188)the Foundation of Scientific Innovation Team of Anhui Province (Grant No. 2006KJ007TD)
文摘Two novel quadrupolar organic compounds, 3-(4-((E)-2-(9-butyl-9H-carbazol-6-yl) vinyl)styryl)-9-propyl-9H-carbazole (BCSPC) and 3-(3-(3-((1E)-2-(4-((E)-2-(3-(3,5-bis(9-butyl-9H-carbazol-6-yl)phenyl)-9-butyl-9H-carbazol-6-yl)vinyl)phenyl) vinyl)-9-butyl-9H-carbazol-6-yl)-5-(9-butyl-9H-carbazol-6-yl)phenyl)-9-butyl-9H-carbazole (BCPBC), with different conjugated arms, have been designed and synthesized. Their one-and two-photon absorption (TPA) and excited fluorescence properties have been experimentally investigated. The two-photon absorption cross-sections of two compounds were estimated by two-photon excited fluorescence technique using 200 fs, 76 MHz, Ti:sapphire laser, which are 22 and 154 GM for BCSPC and BCPBC, respectively. The optimal excitation wavelengths are 780 nm for both BCSPC and BCPBC. A data recording experiment proved the potential application of the materials.
基金supported by the National Key Research and Development Program of China(No.2022YFB2804300)the Creative Research Group Project of NSFC(No.61821003)+2 种基金the Innovation Fund of the Wuhan National Laboratory for Optoelectronicsthe Program for HUST Academic Frontier Youth Teamthe Innovation Project of Optics Valley Laboratory.
文摘The ongoing quest for higher data storage density has led to a plethora of innovations in the field of optical data storage.This review paper provides a comprehensive overview of recent advancements in next-generation optical data storage,offering insights into various technological roadmaps.We pay particular attention to multidimensional and superresolution approaches,each of which uniquely addresses the challenge of dense storage.The multidimensional approach exploits multiple parameters of light,allowing for the storage of multiple bits of information within a single voxel while still adhering to diffraction limitation.Alternatively,superresolution approaches leverage the photoexcitation and photoinhibition properties of materials to create diffraction-unlimited data voxels.We conclude by summarizing the immense opportunities these approaches present,while also outlining the formidable challenges they face in the transition to industrial applications.
基金supported by the National Natural Science Foundation of China(Grant No.60007009)the Nalional Research Funding for Fundamental Key Project of China(Grant No.G1999033004)the Knowledge Innovation Project of the Cbinese Academy of Sciences(Grant No.40001043)
文摘The optical storage characteristics of a new kind of organic photochromic material棗pyrrylfulgide were experimentally investigated in the established parallel optical data storage system. Using the pyrrylfulgide/PMMA film as a photon-mode recording medium, micro-images and encoded binary digital data were recorded, readout and erased in this parallel system. The storage density currently reaches 3?07 bit/cm2. The recorded information on the film can be kept for years in darkness at room temperature.
文摘The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage meth- ods in the information storage as well as information proc- essing.
基金supported by the National Key Research and Development Program of China(No.2021YFB2802001)the National Natural Science Foundation of China(No.62175153)。
文摘A kind of optical data storage medium based on electron-trapping materials,Y_(3)Al_(5)O_(12):Ce^(3+)fluorescent ceramic,was developed by vacuum sintering technology.The medium shows sufficiently deep traps[1.67 and 0.77 eV].The properties of trap levels were researched by thermoluminescence curves,and the optical storage mechanism based on Ce^(3+)ion doping was proposed.More importantly,the data can be written-in by 254 nm UV light,and readout by heating[300°C].This work expands the application fields of fluorescent ceramics,and it is expected to promote the development of electron-trapping materials.
基金supported by the National Natural Science Foundation of China(51762029)the Applied Basic Research Key Program of Yunnan Province(2018FA026)the Key Project of the National Natural Science Foundation of China-Yunnan Joint Fund(U2102215)。
文摘Fast response,high luminescence contrast,three-dimensional(3D)storage,and nondestructive reading are key factors for the optical storage application of photochromic materials.Femtosecond(fs)laser direct writing technology with multiphoton nonlinear absorption is becoming a useful tool for microprocessing functional units in the 3D space of glass owing to its remarkable advantages,such as a fast processing speed and high processing accuracy.Herein,the photochromism of transparent glass codoped with rare-earth ions was investigated under 800-nm fs laser irradiation,affording a fast response.The photochromic glass achieves an upconversion luminescence(UCL)modification of 92%.The photochromic glass can be bleached back to its original color using heat treatment.The transmittance and UCL modification show excellent reproducibility under alternating stimulations between 800-nm fs laser irradiation and heat treatment.The data can be written in the interior of the transparent photochromic glass using 800-nm fs laser irradiation,facilitating 3D information storage.These results suggest that the 800-nm fs laser irradiation-subjected photochromic glass is an ideal optical data storage medium.
文摘Holographic data storage system (HDSS) has been a good candidate for a volumetric recording technology, due to their large storage capacities and high transfer rates, and have been researched for tens of years after the principle of holography was first proposed. However, these systems, called conventional 2-axis holography, still have essential issues for commercialization of products. Collinear HDSS, in which the information and reference beams are modulated co-axially by the same spatial light modulator (SLM), as a new read/write method for HDSS are very promising. With this unique configuration, the optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. Collinear holography can produce a small, practical HDSS more easily than conventional 2-axis holography. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography.
基金supported by the National Natural Science Foundation of China (21073105)the National Basic Research Program of China(2007CB808002)+1 种基金the National High Technology Research and Development Program of China (2012AA030306)Tsinghua University Initiative Scientific Research Program (2011Z23149,2011Z02138)
文摘A novel diarylethene,namely 4,5-(2,5-dimethyl thiophene) phthalimide,was synthesized and successfully introduced to rewritable holographic data storage.Upon the alternative illumination of UV and visible light(>400 nm),this compound underwent rapid,reversible inter-conversion between colorless open-ring isomer and yellow-green ring-closed form in both solution and polymethyl methacrylate(PMMA) film.Subsequently,we investigated the characteristics of volume homographic recording of the diarylethene-doped PMMA film(1 m thick).The maximum refractive index modulation(0.87‰) of the film during recording could be reached within just 120 s which gave the ability of fast recording.The high quality reconstruction after 50 write/erase cycles demonstrated its excellent fatigue-resistance and high resolution.All those results indicated that this molecule was a reliable fast write/erase holographic storage material.