BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside s...BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinom...Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinoma pathologically conformed, plan scans were done firstly. Two-phase spiral CT was performed within one breathhold each. Distension of the stomach was achieved by intravenous application of anisodamine and effervescent granules. After bolus injection of contrast medium, scanning was performed in the arterial and venous phase, and the source images were thin reconstructed. The stomach to three-dimension analysis was constructed by volume rendering (VR) multiplanaz volume reconstruction (MPVR), shaded surface display (SSD) and CT virtual gastroscopy (CTVG) technique. In combination with the sources images, gastric tumour invasion and lymph node metastasis was assessed, and TNM staging was performed. Results: In 29 cases of gastric carcinoma, the sensitivity and specificity of two-phase multidetector-row spiral CT three-dimensional reconstruction technique in T1, T2, T3 and Ta staging, the sensitivity and specificity was 50% and 50%, 87.5% and 77.8%, 83.3% and 76.9% and 100% and 80% respectively. For the N staging, the sensitivity and specificity in No, N1, and N2 N3 was 83.3% and 71.4%, 87.5% and 77.8% and 81.8% and 75% respectively. The sensitivity and the specificity for M1 staging was 100%. Conclusion: The reconstruction technique in combination with 16-slices spiral-CT can perform TNM staging well and effectively guide the choice of the surgical procedures for gastric cancer.展开更多
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method wit...A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.展开更多
The three-dimensional visualization model of human body duct is based on virtual anatomical structure reconstruction with duct angiography,which realizes virtual model transferred from two-dimensional,planar and stati...The three-dimensional visualization model of human body duct is based on virtual anatomical structure reconstruction with duct angiography,which realizes virtual model transferred from two-dimensional,planar and static images into three-dimensional,stereoscopic and dynamic ones repectively.In recent years,the multi-duct segmentation and division of the same specimen(or organ) is the focus of attention shared by surgeons and clinical anatomists.On the basis of 4.22 g/cm3 body bone density,this study has screened out metal oxide contract agent with different density for infusion and modeling,as well as compared and analyzed the effects of three-dimensional image of CT virtual bronchoscopy(CTVB),three-dimensional image of CT maximum intensity projection and three-dimensional model.This experiment result showed synchronously infusing multi-duct of same specimen(or organ) with contrast agent in different densities could reconstruct three-dimensional models of all ducts once only and adjust threshold to develop single or multiple ducts.It was easier to segment and observe the duct structure,anastomosis,directions and crossing in different parts,which was beyond comparison with three-dimensional image of CTVB.Although the existing three-dimensional duct reconstruction techniques still cannot be applied in living bodies temporarily,this study focused on a creative design of ducts segmentation in different density,which proposed a new experimental idea for developing multi-duct three-dimensional model in living body in the future.It will play a significant role in disease diagnosis and individual design in surgical treatment program.Therefore,this study observes the three-dimensional status of human duct with the application of contrast agent fillers in different density,combined with three-dimensional reconstruction technology.It provides an innovative idea and method for constructing three-dimensional model of digital multi-duct specimen,and the ultimate goal is to develop the digitized virtual human and precise medical treatment better and faster.展开更多
The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual worklo...The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.展开更多
BACKGROUND Well-differentiated liposarcoma is the second most common pathologic type of retroperitoneal sarcoma.It is characterized by a huge mass,but multiple organ invasions are common.Surgery is the only treatment ...BACKGROUND Well-differentiated liposarcoma is the second most common pathologic type of retroperitoneal sarcoma.It is characterized by a huge mass,but multiple organ invasions are common.Surgery is the only treatment option for potential cure.Hyper-accuracy three-dimensional(3D)reconstruction is widely used in robotic partly nephrectomy owing to its ability to visualize overlapping anatomy.CASE SUMMARY A 54-year-old man was admitted for progressive abdominal distension over the preceding 2 mo.Computed tomography revealed a 32 cm×21 cm×12 cm lipomatous mass.Hyper-accuracy 3D reconstruction was performed because of the complex relationship between the mass and nearby tissue.The patient underwent surgical resection,and the tumor did not recur for over 16 mo.CONCLUSION Hyper-accuracy 3D reconstruction is useful for operative planning owing to its intuitiveness and precise determination of anatomical structures in both tumors and nearby tissues.展开更多
Enhanced recovery after surgery(ERAS)protocols are applied in orthopedic surgery and are intended to reduce perioperative stress by implementing combined evidence-based practices with the cooperation of various health...Enhanced recovery after surgery(ERAS)protocols are applied in orthopedic surgery and are intended to reduce perioperative stress by implementing combined evidence-based practices with the cooperation of various health professionals as an interdisciplinary team.ERAS pathways include pre-operative patient counselling,regional anesthesia and analgesia techniques,post-operative pain management,early mobilization and early feeding.Studies have shown improvement in the recovery of patients who followed an ERAS program after hip or knee arthroplasty,compared with those who followed a traditional care approach.ERAS protocols reduce post-operative stress,contribute to rapid recovery,shorten length of stay(LOS)without increasing the complications or readmissions,improve patient satisfaction and decrease the hospital costs.We suggest that the ERAS pathway could reduce the LOS in hospital for patients undergoing total hip replacement or total knee replacement.These programs require good organization and handling by the multidisciplinary team.ERAS programs increase patient's satisfaction due to their active participation which they experience as personalized treatment.The aim of the study was to develop an ERAS protocol for oncology patients who undergo bone reconstruction surgeries using massive endoprosthesis,with a view to improving the surgical outcomes.展开更多
A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion...A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments.展开更多
Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is p...Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is proposed to reduce the phase error caused by the nonlinear response of a digital projector in the three-dimensional measurement system of fringe structured light.According to the analysis of the influence of Gamma distortion on the phase calculation,the algorithm establishes the relationship model between phase error and harmonic coefficient,introduces phase shift to the signal,and keeps the signal amplitude constant while filtering out the DC component.The phase error is converted to the transform domain,and compared with the numeric value in the space domain.The algorithm is combined with a spiral phase function to optimize the Hilbert transform,so as to eliminate external noise,enhance the image quality,and get an accurate phase value.Experimental results show that the proposed method can effectively improve the accuracy and speed of phase measurement.By performing phase error compensation for free-form surface objects,the phase error is reduced by about 26%,and about 27%of the image reconstruction time is saved,which further demonstrates the feasibility and effectiveness of the method.展开更多
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p...Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.展开更多
Objective This work is designed effect and production to improve the quality, visual efficiency of ecological reconstruction of fossil insects by using various three- dimensional software and exploring helpful method...Objective This work is designed effect and production to improve the quality, visual efficiency of ecological reconstruction of fossil insects by using various three- dimensional software and exploring helpful methodologies and techniques.展开更多
Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital wer...Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the展开更多
With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary su...With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.展开更多
An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable...An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.展开更多
Traumatic amputations remain one of the most frequent and disturbing wounds of armed conflict.In this scenario,most amputees develop residual and phantom limb pain,impacting their quality of life.There are several ele...Traumatic amputations remain one of the most frequent and disturbing wounds of armed conflict.In this scenario,most amputees develop residual and phantom limb pain,impacting their quality of life.There are several elective surgical procedures available for both conditions,such as neuroma excision followed by nerve reconstruction,nerve relocation,e.g.,surgically implanting a transected nerve into a muscle,nerve transfers in cases of associated paralysis,and most recently,regenerative peripheral nerve interface surgery.Whenever possible in the post-conflict phase,a coordinated effort between traveling humanitarian surgeons specializing in reconstructive microsurgery and local healthcare providers is essential for successfully treating phantom and chronic residual limb pain in post-conflict amputees.While providing a detailed logistical framework for global humanitarian missions is beyond the scope of this article,we provide a brief perspective on a topic of utmost importance for reconstructive surgeons worldwide:the high-quality care and treatment of refugees and those whose lives have been impacted by conflict,disaster,or displacement.展开更多
BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution...BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution and contrast in macrosection images. OBJECTIVE: To explore a semi-automatic computerized three-dimensional (3D) reconstruction of human spinal cord based on histological serial sections, in order to solve issues such as low contrast. DESIGN, TIME AND SETTING: An experimental study combining serial section techniques and 3D reconstruction, performed in the laboratory of Human Anatomy and Histoembryology at the Medical School of Nantong University during January to April 2008. SETTING: Department of Anatomy, Institute of Neurobiology, Jiangsu Province Key Laboratory of Neural Regeneration, Laboratory of Image Engineering. MATERIALS: A human lumbar spinal cord segment from fresh autopsy material of an adult male. METHODS: After 4% paraformaldehyde fixation for three days, serial sections of the lumbar spinal cord were cut on a Leica cryostat and mounted on slides in sequence, with eight sections aligned separately on each slide. All sections were stained with Luxol Fast Blue to reveal myelin sheaths. After gradient dehydration and clearing, the stained slides were coverslipped. Sections were observed and images recorded under a light microscope using a digital camera. Six images were acquired at x25 magnification and automatically stitched into a complete section image. After all serial images were obtained, 96 complete serial images of the human lumbar cord segment were automatically processed with "Curves", "Autocontrast", "Gray scale 8 bit", "Invert", "Image resize to 50%" steps using Photoshop 7.0 software. All images were added in order into 3D-DOCTOR 4.0 software as a stack, where serial images were automatically realigned with neighboring images and semi-automatically segmented for white matter and gray matter. Finally, simple surface and volume reconstruction were completed on a personal computer. The reconstructed human lumbar spinal cord segment was interactively observed, cut, and measured. MAIN OUTCOME MEASURES: The reconstructed human lumbar spinal cord segment. RESULTS: Compared with serial images obtained from other image modalities, such as CT, MRI, and macrosections from The Visual Human Project database, the Luxol Fast Blue stained histological serial section images exhibited higher resolution and contrast between gray and white matter. Image processing and 3D reconstruction steps were semi-automatically performed with related software. The 3D reconstructed human lumbar cord segment were observed, cut, and measured on a PC. CONCLUSION: A semi-automatically computerized method, based on histological serial sections, is an effective way to 3D-reconstruct the human spinal cord.展开更多
Introduction: Iliac particulate cancellous bone and marrow (PCBM) is commonly used as a high-quality reconstruction material;however, PCBM cannot be extracted in sufficient amounts to meet demand. To determine the app...Introduction: Iliac particulate cancellous bone and marrow (PCBM) is commonly used as a high-quality reconstruction material;however, PCBM cannot be extracted in sufficient amounts to meet demand. To determine the appropriate amount of iliac PCBM to be collected, we used digital technology to measure the volume required for jaw reconstruction before surgery. Clinical Case: The patient, a 23-year-old man, underwent surgery for a calcifying odontogenic cyst. A maxillary cyst occupied the left anterior-premolar region (tooth 21 - 25) and the deciduous canine remained;a permanent canine was included in the cyst. We planned to preserve the teeth except for the impacted canine, completely excise the maxillary cyst, and preserve the alveolar ridge morphology. Preoperative digital imaging was used to determine the amount of alveolar ridge reconstruction required and accordingly determine the amount of iliac cancellous bone to be harvested. We used a titanium mesh tray and grafts of iliac particulate cancellous bone and marrow to reconstruct the alveolar ridge. The amount of iliac cancellous bone that needed to be collected was clarified and the supply amount could be collected in just the right amount;thus, the cortical bone of the iliac inner plate could be preserved. The alveolar bone morphology was reconstructed to allow the placement of dental implants as per the preoperative digital surgery. Three years after the operation, no sign of recurrence has been observed. Conclusion: Minimally invasive surgery was performed by clarifying the amount of iliac cancellous bone graft that needs to be harvested, which improved the accuracy of surgery.展开更多
文摘BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.
基金This project was supported by a grant from the Natural Science Foundation of Hubei Province (No. 2002AB130)
文摘Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinoma pathologically conformed, plan scans were done firstly. Two-phase spiral CT was performed within one breathhold each. Distension of the stomach was achieved by intravenous application of anisodamine and effervescent granules. After bolus injection of contrast medium, scanning was performed in the arterial and venous phase, and the source images were thin reconstructed. The stomach to three-dimension analysis was constructed by volume rendering (VR) multiplanaz volume reconstruction (MPVR), shaded surface display (SSD) and CT virtual gastroscopy (CTVG) technique. In combination with the sources images, gastric tumour invasion and lymph node metastasis was assessed, and TNM staging was performed. Results: In 29 cases of gastric carcinoma, the sensitivity and specificity of two-phase multidetector-row spiral CT three-dimensional reconstruction technique in T1, T2, T3 and Ta staging, the sensitivity and specificity was 50% and 50%, 87.5% and 77.8%, 83.3% and 76.9% and 100% and 80% respectively. For the N staging, the sensitivity and specificity in No, N1, and N2 N3 was 83.3% and 71.4%, 87.5% and 77.8% and 81.8% and 75% respectively. The sensitivity and the specificity for M1 staging was 100%. Conclusion: The reconstruction technique in combination with 16-slices spiral-CT can perform TNM staging well and effectively guide the choice of the surgical procedures for gastric cancer.
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
基金supported by the National Natural Science Foundation of China (No. 12220101005)Natural Science Foundation of Jiangsu Province (No. BK20220132)+2 种基金Primary Research and Development Plan of Jiangsu Province (No. BE2019002-3)Fundamental Research Funds for Central Universities (No. NG2022004)the Foundation of the Graduate Innovation Center in NUAA (No. xcxjh20210613)。
文摘A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.
基金supported by Medical Scientific Research Funding Project of Guangdong Province,China(No.2014777)
文摘The three-dimensional visualization model of human body duct is based on virtual anatomical structure reconstruction with duct angiography,which realizes virtual model transferred from two-dimensional,planar and static images into three-dimensional,stereoscopic and dynamic ones repectively.In recent years,the multi-duct segmentation and division of the same specimen(or organ) is the focus of attention shared by surgeons and clinical anatomists.On the basis of 4.22 g/cm3 body bone density,this study has screened out metal oxide contract agent with different density for infusion and modeling,as well as compared and analyzed the effects of three-dimensional image of CT virtual bronchoscopy(CTVB),three-dimensional image of CT maximum intensity projection and three-dimensional model.This experiment result showed synchronously infusing multi-duct of same specimen(or organ) with contrast agent in different densities could reconstruct three-dimensional models of all ducts once only and adjust threshold to develop single or multiple ducts.It was easier to segment and observe the duct structure,anastomosis,directions and crossing in different parts,which was beyond comparison with three-dimensional image of CTVB.Although the existing three-dimensional duct reconstruction techniques still cannot be applied in living bodies temporarily,this study focused on a creative design of ducts segmentation in different density,which proposed a new experimental idea for developing multi-duct three-dimensional model in living body in the future.It will play a significant role in disease diagnosis and individual design in surgical treatment program.Therefore,this study observes the three-dimensional status of human duct with the application of contrast agent fillers in different density,combined with three-dimensional reconstruction technology.It provides an innovative idea and method for constructing three-dimensional model of digital multi-duct specimen,and the ultimate goal is to develop the digitized virtual human and precise medical treatment better and faster.
基金supported by grants from the National Key Research and Development Plan of China,No.31670986(to QTZ)the Science and Technology Project of Guangdong Province of China,No.2014B020227001,2017A050501017(to QTZ)the Science and Technology Project of Guangzhou of China,No.201807010082(to QTZ),201704030041(to JQ)
文摘The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.
基金the National Natural Science Foundation of China,No.81272833.
文摘BACKGROUND Well-differentiated liposarcoma is the second most common pathologic type of retroperitoneal sarcoma.It is characterized by a huge mass,but multiple organ invasions are common.Surgery is the only treatment option for potential cure.Hyper-accuracy three-dimensional(3D)reconstruction is widely used in robotic partly nephrectomy owing to its ability to visualize overlapping anatomy.CASE SUMMARY A 54-year-old man was admitted for progressive abdominal distension over the preceding 2 mo.Computed tomography revealed a 32 cm×21 cm×12 cm lipomatous mass.Hyper-accuracy 3D reconstruction was performed because of the complex relationship between the mass and nearby tissue.The patient underwent surgical resection,and the tumor did not recur for over 16 mo.CONCLUSION Hyper-accuracy 3D reconstruction is useful for operative planning owing to its intuitiveness and precise determination of anatomical structures in both tumors and nearby tissues.
文摘Enhanced recovery after surgery(ERAS)protocols are applied in orthopedic surgery and are intended to reduce perioperative stress by implementing combined evidence-based practices with the cooperation of various health professionals as an interdisciplinary team.ERAS pathways include pre-operative patient counselling,regional anesthesia and analgesia techniques,post-operative pain management,early mobilization and early feeding.Studies have shown improvement in the recovery of patients who followed an ERAS program after hip or knee arthroplasty,compared with those who followed a traditional care approach.ERAS protocols reduce post-operative stress,contribute to rapid recovery,shorten length of stay(LOS)without increasing the complications or readmissions,improve patient satisfaction and decrease the hospital costs.We suggest that the ERAS pathway could reduce the LOS in hospital for patients undergoing total hip replacement or total knee replacement.These programs require good organization and handling by the multidisciplinary team.ERAS programs increase patient's satisfaction due to their active participation which they experience as personalized treatment.The aim of the study was to develop an ERAS protocol for oncology patients who undergo bone reconstruction surgeries using massive endoprosthesis,with a view to improving the surgical outcomes.
文摘A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments.
基金This work is funded by the Scientific and Technological Projects of Henan Province under Grant 152102210115.
文摘Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is proposed to reduce the phase error caused by the nonlinear response of a digital projector in the three-dimensional measurement system of fringe structured light.According to the analysis of the influence of Gamma distortion on the phase calculation,the algorithm establishes the relationship model between phase error and harmonic coefficient,introduces phase shift to the signal,and keeps the signal amplitude constant while filtering out the DC component.The phase error is converted to the transform domain,and compared with the numeric value in the space domain.The algorithm is combined with a spiral phase function to optimize the Hilbert transform,so as to eliminate external noise,enhance the image quality,and get an accurate phase value.Experimental results show that the proposed method can effectively improve the accuracy and speed of phase measurement.By performing phase error compensation for free-form surface objects,the phase error is reduced by about 26%,and about 27%of the image reconstruction time is saved,which further demonstrates the feasibility and effectiveness of the method.
文摘Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.
基金supported by the National Basic Research Program of China(973 Programgrant No.2012CB821906)+2 种基金the National Natural Science Foundation of China(grants No.31230065 and 41272006)Great Wall Scholar and Key Project of Beijing Municipal Commission of Education Project(grant No.KZ201310028033)the Program for Changjiang Scholars and Innovative Research Team in University(grant No.IRT13081)
文摘Objective This work is designed effect and production to improve the quality, visual efficiency of ecological reconstruction of fossil insects by using various three- dimensional software and exploring helpful methodologies and techniques.
文摘Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the
基金Supported by National Natural Science Foundation of China,No.82070638 and No.81770621and JSPS KAKENHI,No.JP18H02866.
文摘With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.
基金Project(2012CB725301)supported by the National Basic Research Program of ChinaProject(201412015)supported by the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of ChinaProject(212000168)supported by the Basic Survey-Mapping Program of National Administration of Surveying,Mapping and Geoinformation of China
文摘An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.
文摘Traumatic amputations remain one of the most frequent and disturbing wounds of armed conflict.In this scenario,most amputees develop residual and phantom limb pain,impacting their quality of life.There are several elective surgical procedures available for both conditions,such as neuroma excision followed by nerve reconstruction,nerve relocation,e.g.,surgically implanting a transected nerve into a muscle,nerve transfers in cases of associated paralysis,and most recently,regenerative peripheral nerve interface surgery.Whenever possible in the post-conflict phase,a coordinated effort between traveling humanitarian surgeons specializing in reconstructive microsurgery and local healthcare providers is essential for successfully treating phantom and chronic residual limb pain in post-conflict amputees.While providing a detailed logistical framework for global humanitarian missions is beyond the scope of this article,we provide a brief perspective on a topic of utmost importance for reconstructive surgeons worldwide:the high-quality care and treatment of refugees and those whose lives have been impacted by conflict,disaster,or displacement.
基金Natural Science Research Plan forJiangsu Colleges, No.05KJB180105 Postgraduate Innovation Cultivating Projectin Jiangsu Province, No.CX07s_035z
文摘BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution and contrast in macrosection images. OBJECTIVE: To explore a semi-automatic computerized three-dimensional (3D) reconstruction of human spinal cord based on histological serial sections, in order to solve issues such as low contrast. DESIGN, TIME AND SETTING: An experimental study combining serial section techniques and 3D reconstruction, performed in the laboratory of Human Anatomy and Histoembryology at the Medical School of Nantong University during January to April 2008. SETTING: Department of Anatomy, Institute of Neurobiology, Jiangsu Province Key Laboratory of Neural Regeneration, Laboratory of Image Engineering. MATERIALS: A human lumbar spinal cord segment from fresh autopsy material of an adult male. METHODS: After 4% paraformaldehyde fixation for three days, serial sections of the lumbar spinal cord were cut on a Leica cryostat and mounted on slides in sequence, with eight sections aligned separately on each slide. All sections were stained with Luxol Fast Blue to reveal myelin sheaths. After gradient dehydration and clearing, the stained slides were coverslipped. Sections were observed and images recorded under a light microscope using a digital camera. Six images were acquired at x25 magnification and automatically stitched into a complete section image. After all serial images were obtained, 96 complete serial images of the human lumbar cord segment were automatically processed with "Curves", "Autocontrast", "Gray scale 8 bit", "Invert", "Image resize to 50%" steps using Photoshop 7.0 software. All images were added in order into 3D-DOCTOR 4.0 software as a stack, where serial images were automatically realigned with neighboring images and semi-automatically segmented for white matter and gray matter. Finally, simple surface and volume reconstruction were completed on a personal computer. The reconstructed human lumbar spinal cord segment was interactively observed, cut, and measured. MAIN OUTCOME MEASURES: The reconstructed human lumbar spinal cord segment. RESULTS: Compared with serial images obtained from other image modalities, such as CT, MRI, and macrosections from The Visual Human Project database, the Luxol Fast Blue stained histological serial section images exhibited higher resolution and contrast between gray and white matter. Image processing and 3D reconstruction steps were semi-automatically performed with related software. The 3D reconstructed human lumbar cord segment were observed, cut, and measured on a PC. CONCLUSION: A semi-automatically computerized method, based on histological serial sections, is an effective way to 3D-reconstruct the human spinal cord.
文摘Introduction: Iliac particulate cancellous bone and marrow (PCBM) is commonly used as a high-quality reconstruction material;however, PCBM cannot be extracted in sufficient amounts to meet demand. To determine the appropriate amount of iliac PCBM to be collected, we used digital technology to measure the volume required for jaw reconstruction before surgery. Clinical Case: The patient, a 23-year-old man, underwent surgery for a calcifying odontogenic cyst. A maxillary cyst occupied the left anterior-premolar region (tooth 21 - 25) and the deciduous canine remained;a permanent canine was included in the cyst. We planned to preserve the teeth except for the impacted canine, completely excise the maxillary cyst, and preserve the alveolar ridge morphology. Preoperative digital imaging was used to determine the amount of alveolar ridge reconstruction required and accordingly determine the amount of iliac cancellous bone to be harvested. We used a titanium mesh tray and grafts of iliac particulate cancellous bone and marrow to reconstruct the alveolar ridge. The amount of iliac cancellous bone that needed to be collected was clarified and the supply amount could be collected in just the right amount;thus, the cortical bone of the iliac inner plate could be preserved. The alveolar bone morphology was reconstructed to allow the placement of dental implants as per the preoperative digital surgery. Three years after the operation, no sign of recurrence has been observed. Conclusion: Minimally invasive surgery was performed by clarifying the amount of iliac cancellous bone graft that needs to be harvested, which improved the accuracy of surgery.