In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that ...In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps...Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.展开更多
The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired da...The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.展开更多
We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combi...We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.展开更多
Late Carboniferous to Early Permian A-type granites are extensively distributed throughout the West Junggar region, NW China, and the Akebasitao pluton is extremely distinguished among these plutons. In this paper, we...Late Carboniferous to Early Permian A-type granites are extensively distributed throughout the West Junggar region, NW China, and the Akebasitao pluton is extremely distinguished among these plutons. In this paper, we reported new anisotropy of magnetic susceptible (AMS) data combine with detailed field study and audio magnetotelluric (AMT) sounding to assess the three-dimensional shape and magmatic emplacement mechanism of the Akebasitao pluton. The geological features and the AMT sounding indicate that the pluton had a slightly oblique movement of magma from northwest to southeast, which was most likely to correspond to an asymmetrical torch with a laccolith-shaped upper part, and a lower part formed by sub-vertical "root" that was located within its northwestern part, probably controlled by the NE-trending Anqi fault. The AMS fabrics of all the specimens reveal a low Pj value (mean of 1.02) and a low T value (mean of -0.024), suggesting that the deformation of the AMS ellipsoid is relatively weak. The specimens exhibit both oblate and prolate shapes of the AMS ellipsoid. Magnetic lineations and foliations are randomly distributed throughout the pluton without any preferred orientation. These AMS patterns indicate that the pluton formed in a relatively stable structural environment with no regional extrusion. Therefore, we propose a complex emplacement process in which the magmas reached the shallower crust levels via deep-faults and subsequently occupied the room created by doming, accompanied by stoping near the pluton roof. Additionally, the regional tectonic setting was relatively stable during the emplacement of the Akebasitao pluton, indicating the termination of compressional orogeny during the late Late Carboniferous in the West Junggar region. This conclusion perfectly coincides with the regional tectonic paleogeography, magmatic system, and paleostress field.展开更多
This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measur...This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measurement system based on stereo deflectometry typically consists of a fringe-displaying screen,a main camera,and a reference camera.The arrangement of the components of a stereo deflectometry system is important for achieving high-accuracy measurements.In this paper,four geometric parameters of a stereo deflectometry system are analyzed and evaluated:the distance between the main camera and the measured object surface,the angle between the main camera ray and the surface normal,the distance between the fringe-displaying screen and the object,and the angle between the main camera and the reference camera.The influence of the geometric parameters on the measurement accuracy is evaluated.Experiments are performed using simulated and experimental data.The experimental results confirm the impact of these parameters on the measurement accuracy.A measurement system based on the proposed analysis has been set up to measure a stock concave mirror.Through a comparison of the given surface parameters of the concave mirror,a global measurement accuracy of 154.2 nm was achieved.展开更多
The creation of three-dimensional models from an unorganized set of points is an active research area in computer graphics.One of the purposes of this study is to explore the 3D reconstruction of a cube-type artificia...The creation of three-dimensional models from an unorganized set of points is an active research area in computer graphics.One of the purposes of this study is to explore the 3D reconstruction of a cube-type artificial reef(CTAR)set by linear structured light and binocular stereo vision technology in an underwater environment.The experimental setup is composed of two ca-meras in a stereo vision configuration.The alpha shapes method can be used to construct a surface that most closely reflects the arti-ficial reef set described by the points.A parameter study is conducted to assess the scales of the set(i.e.,usable volume,surface area,projected area,height,and base diameter)on the basis of 3D reconstruction.Experimental results show that the quality of 3D recon-struction in an underwater environment is acceptable for estimating the scale size of the CTAR set.According to the measurement of the scale sizing of the CTAR set,the relationships between the parameters of the CTAR set and the number of CTAR modules were determined.Moreover,the usable volume of the CTAR set can be estimated depending on the basis of the number of CTAR modules.展开更多
The rise of artificial intelligence generated content(AIGC)has been remarkable in the language and image fields,but artificial intelligence(AI)generated three-dimensional(3D)models are still under-explored due to thei...The rise of artificial intelligence generated content(AIGC)has been remarkable in the language and image fields,but artificial intelligence(AI)generated three-dimensional(3D)models are still under-explored due to their complex nature and lack of training data.The conventional approach of creating 3D content through computer-aided design(CAD)is labor-intensive and requires expertise,making it challenging for novice users.To address this issue,we propose a sketch-based 3D modeling approach,Deep3DSketch-im,which uses a single freehand sketch for modeling.This is a challenging task due to the sparsity and ambiguity.Deep3DSketch-im uses a novel data representation called the signed distance field(SDF)to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points,and a specially designed neural network that can capture point and local features.Extensive experiments are conducted to demonstrate the effectiveness of the approach,achieving state-of-the-art(SOTA)performance on both synthetic and real datasets.Additionally,users show more satisfaction with results generated by Deep3DSketch-im,as reported in a user study.We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.展开更多
In this paper, we incorporate fuzzy mathematics approach into the Eulerian method to simulate three dimensional multi-material interfaces. In particular, we propose a fuzzy interface treatment for describing interface...In this paper, we incorporate fuzzy mathematics approach into the Eulerian method to simulate three dimensional multi-material interfaces. In particular, we propose a fuzzy interface treatment for describing interfaces, designing transport plans, and computing transport quantities. Using a set of three-dimensional inviscid isothermal elastic-plastic hydrodynamic equations, we simulate shaped charge jet in different filled dynamite structures. Strain and stress have been under consideration in simulations. Numerical results demonstrate that the fuzzy interface treatment is correct and efficient for three-dimensional multi-material problems.展开更多
A new three-dimensional missile guidance law to control the impact vector against a stationary target is proposed.The composite guidance law has two well-known components:Apollo descent guidance and trajectory shaping...A new three-dimensional missile guidance law to control the impact vector against a stationary target is proposed.The composite guidance law has two well-known components:Apollo descent guidance and trajectory shaping guidance.These respectively linear and planar guidance laws are combined to achieve a specified impact direction.The main idea is to define an impact plane and to steer the missile onto this plane using Apollo descent guidance while concurrently performing trajectory shaping with reference to the impact plane.The resulting guidance law is expressed by a single equation in vector form,which is straightforward to implement.Because it originates from an optimal formulation,the performance of the proposed technique is expected to be satisfactory.This is confirmed by comparative simulation runs,which also involve the method known as generalized explicit guidance.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61144006)
文摘In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
基金the China Scholarship Council under Grant No.201406070059.
文摘Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.
文摘The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.
基金supported in part by the National Natural Science Foundation of China(Nos.91750202,11530046,and 11474156)the National Key R&D Program of China(No.2017YFA0303700)+1 种基金the Collaborative Innovation Center of Advanced Microstructures of Chinathe Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics of China
文摘We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.
基金funded by the China Geological Survey (Grant Nos.1212011120502,1212011220245)
文摘Late Carboniferous to Early Permian A-type granites are extensively distributed throughout the West Junggar region, NW China, and the Akebasitao pluton is extremely distinguished among these plutons. In this paper, we reported new anisotropy of magnetic susceptible (AMS) data combine with detailed field study and audio magnetotelluric (AMT) sounding to assess the three-dimensional shape and magmatic emplacement mechanism of the Akebasitao pluton. The geological features and the AMT sounding indicate that the pluton had a slightly oblique movement of magma from northwest to southeast, which was most likely to correspond to an asymmetrical torch with a laccolith-shaped upper part, and a lower part formed by sub-vertical "root" that was located within its northwestern part, probably controlled by the NE-trending Anqi fault. The AMS fabrics of all the specimens reveal a low Pj value (mean of 1.02) and a low T value (mean of -0.024), suggesting that the deformation of the AMS ellipsoid is relatively weak. The specimens exhibit both oblate and prolate shapes of the AMS ellipsoid. Magnetic lineations and foliations are randomly distributed throughout the pluton without any preferred orientation. These AMS patterns indicate that the pluton formed in a relatively stable structural environment with no regional extrusion. Therefore, we propose a complex emplacement process in which the magmas reached the shallower crust levels via deep-faults and subsequently occupied the room created by doming, accompanied by stoping near the pluton roof. Additionally, the regional tectonic setting was relatively stable during the emplacement of the Akebasitao pluton, indicating the termination of compressional orogeny during the late Late Carboniferous in the West Junggar region. This conclusion perfectly coincides with the regional tectonic paleogeography, magmatic system, and paleostress field.
文摘This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measurement system based on stereo deflectometry typically consists of a fringe-displaying screen,a main camera,and a reference camera.The arrangement of the components of a stereo deflectometry system is important for achieving high-accuracy measurements.In this paper,four geometric parameters of a stereo deflectometry system are analyzed and evaluated:the distance between the main camera and the measured object surface,the angle between the main camera ray and the surface normal,the distance between the fringe-displaying screen and the object,and the angle between the main camera and the reference camera.The influence of the geometric parameters on the measurement accuracy is evaluated.Experiments are performed using simulated and experimental data.The experimental results confirm the impact of these parameters on the measurement accuracy.A measurement system based on the proposed analysis has been set up to measure a stock concave mirror.Through a comparison of the given surface parameters of the concave mirror,a global measurement accuracy of 154.2 nm was achieved.
基金This research was supported by the National Key R&D Program of China(No.2019YFD0901302)the National Natural Science Foundation of China(No.31802349).
文摘The creation of three-dimensional models from an unorganized set of points is an active research area in computer graphics.One of the purposes of this study is to explore the 3D reconstruction of a cube-type artificial reef(CTAR)set by linear structured light and binocular stereo vision technology in an underwater environment.The experimental setup is composed of two ca-meras in a stereo vision configuration.The alpha shapes method can be used to construct a surface that most closely reflects the arti-ficial reef set described by the points.A parameter study is conducted to assess the scales of the set(i.e.,usable volume,surface area,projected area,height,and base diameter)on the basis of 3D reconstruction.Experimental results show that the quality of 3D recon-struction in an underwater environment is acceptable for estimating the scale size of the CTAR set.According to the measurement of the scale sizing of the CTAR set,the relationships between the parameters of the CTAR set and the number of CTAR modules were determined.Moreover,the usable volume of the CTAR set can be estimated depending on the basis of the number of CTAR modules.
基金Project supported by the National Key R&D Program of China(No.2022YFB3303301)the National Natural Science Foundation of China(Nos.62006208,62107035,and 62207024)the Public Welfare Research Program of Huzhou Science and Technology Bureau,China(No.2022GZ01)。
文摘The rise of artificial intelligence generated content(AIGC)has been remarkable in the language and image fields,but artificial intelligence(AI)generated three-dimensional(3D)models are still under-explored due to their complex nature and lack of training data.The conventional approach of creating 3D content through computer-aided design(CAD)is labor-intensive and requires expertise,making it challenging for novice users.To address this issue,we propose a sketch-based 3D modeling approach,Deep3DSketch-im,which uses a single freehand sketch for modeling.This is a challenging task due to the sparsity and ambiguity.Deep3DSketch-im uses a novel data representation called the signed distance field(SDF)to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points,and a specially designed neural network that can capture point and local features.Extensive experiments are conducted to demonstrate the effectiveness of the approach,achieving state-of-the-art(SOTA)performance on both synthetic and real datasets.Additionally,users show more satisfaction with results generated by Deep3DSketch-im,as reported in a user study.We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.
基金the National Natural Science Foundation of China (Grant No.10272023).
文摘In this paper, we incorporate fuzzy mathematics approach into the Eulerian method to simulate three dimensional multi-material interfaces. In particular, we propose a fuzzy interface treatment for describing interfaces, designing transport plans, and computing transport quantities. Using a set of three-dimensional inviscid isothermal elastic-plastic hydrodynamic equations, we simulate shaped charge jet in different filled dynamite structures. Strain and stress have been under consideration in simulations. Numerical results demonstrate that the fuzzy interface treatment is correct and efficient for three-dimensional multi-material problems.
文摘A new three-dimensional missile guidance law to control the impact vector against a stationary target is proposed.The composite guidance law has two well-known components:Apollo descent guidance and trajectory shaping guidance.These respectively linear and planar guidance laws are combined to achieve a specified impact direction.The main idea is to define an impact plane and to steer the missile onto this plane using Apollo descent guidance while concurrently performing trajectory shaping with reference to the impact plane.The resulting guidance law is expressed by a single equation in vector form,which is straightforward to implement.Because it originates from an optimal formulation,the performance of the proposed technique is expected to be satisfactory.This is confirmed by comparative simulation runs,which also involve the method known as generalized explicit guidance.