Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative ex...Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the ...Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient.展开更多
In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those ...In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those provide references and ideas for the later large-scale production of augmented reality three-dimensional map. The augmented reality three-dimensional map is produced based on skyline software. Including the map browsing, measurement and analysis and so on, the basic function of three-dimensional map is realized. The special functional module including housing management, pipeline management and so on is developed combining the need of residential quarters development, that expands the application fields of augmented reality three-dimensional map. Those lay the groundwork for the application of augmented reality three-dimensional map. .展开更多
Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enha...Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.展开更多
In order to increase the capacity of encrypted information and reduce the loss of information transmission, a three-dimensional(3 D) scene encryption algorithm based on the phase iteration of the angular spectrum doma...In order to increase the capacity of encrypted information and reduce the loss of information transmission, a three-dimensional(3 D) scene encryption algorithm based on the phase iteration of the angular spectrum domain is proposed in this paper. The algorithm, which adopts the layer-oriented method, generates the computer generated hologram by encoding the three-dimensional scene. Then the computer generated hologram is encoded into three pure phase functions by adopting the phase iterative algorithm based on angular spectrum domain,and the encryption process is completed. The three-dimensional scene encryption can improve the capacity of the information,and the three-phase iterative algorithm can guarantee the security of the encryption information. The numerical simulation results show that the algorithm proposed in this paper realized the encryption and decryption of three-dimensional scenes. At the same time, it can ensure the safety of the encrypted information and increase the capacity of the encrypted information.展开更多
An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law...An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.展开更多
Encryption and decryption method of three-dimensional objects uses holograms computer-generated and suggests encoding stage. Information obtained amplitude and phase of a three-dimensional object using mathematically ...Encryption and decryption method of three-dimensional objects uses holograms computer-generated and suggests encoding stage. Information obtained amplitude and phase of a three-dimensional object using mathematically stage transforms overlap stored on a digital computer. Different three-dimensional images restore and develop the system for the expansion of the three-dimensional scenes and camera movement parameters. This article talks about these kinds of digital image processing algorithms as the reconstruction of three-dimensional model of the scene. In the present state, many such algorithms need to be improved in this paper proposing one of the options to improve the accuracy of such reconstruction.展开更多
With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, ...With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, such as urban construction, interior design, industrial simulation and tourism teaching. China's three-dimensional animation production started relatively late, but has achieved good results with the support of related advanced technology in the process of development. Computer virtual simulation technology is an important technical support in the production of three-dimensional animation. In this paper, firstly, the related content of computer virtual simulation technology was introduced. Then, the specific application of this technology in the production of three-dimensional animation was further elaborated, so as to provide some reference for the improvement of the production effect of three-dimensional animation in the future.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the vi...The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.展开更多
According to the features of the turning simulation, a simplified Whitted lighti ng model is proposed based on the analysis of Phong and other local illumination model. Moreover, in order to obtain the natural lightin...According to the features of the turning simulation, a simplified Whitted lighti ng model is proposed based on the analysis of Phong and other local illumination model. Moreover, in order to obtain the natural lighting effects, local ray tra cing algorithm is given to calculate the light intensity of every position durin g the course of the simulation. This method can calculate the refresh area befor e calculating the intersection line, simulate the machining environment accurate ly and reduce the calculating time. Finally, an example of the virtual cutting s cene is shown to demonstrate the effects of the global illumination model. If th e CUP is 1.3 G and the internal memory is 128 M, the refreshing time of virtual turning scene can be reduced by nine times.This study plays an important role in the enrichment of the virtual manufacturing theory and the promotion of the dev elopment of the advanced manufacturing technology.展开更多
Through the analysis and comparison of shortcomings and advantages of existing technologies on object modeling in 3D applications,we propose a new modeling method for virtual scene based on multi-view image sequence t...Through the analysis and comparison of shortcomings and advantages of existing technologies on object modeling in 3D applications,we propose a new modeling method for virtual scene based on multi-view image sequence to model irregular objects efficiently in 3D application.In 3D scene,this method can get better visual effect by tracking the viewer's real-time perspective position and projecting the photos from different perspectives dynamically.The philosophy of design,the steps of development and some other relevant topics are discussed in details,and the validity of the algorithm is analyzed.The results demonstrate that this method represents more superiority on simulating irregular objects by applying it to the modeling of virtual museum.展开更多
Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the inter...Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.展开更多
文摘Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
文摘Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient.
文摘In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those provide references and ideas for the later large-scale production of augmented reality three-dimensional map. The augmented reality three-dimensional map is produced based on skyline software. Including the map browsing, measurement and analysis and so on, the basic function of three-dimensional map is realized. The special functional module including housing management, pipeline management and so on is developed combining the need of residential quarters development, that expands the application fields of augmented reality three-dimensional map. Those lay the groundwork for the application of augmented reality three-dimensional map. .
基金supported by Special Project of Scientific Research of Education Department of Shaanxi Provincial Government under Grant No.11JK0967
文摘Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.
基金supported by the Natural Science ResearchProject of the Colleges and Universities of Anhui Province(KJ2016A056)Natural Science Foundation of Anhui Province of China(1508085MF121)National Natural Science Foundation of China(61572032)。
文摘In order to increase the capacity of encrypted information and reduce the loss of information transmission, a three-dimensional(3 D) scene encryption algorithm based on the phase iteration of the angular spectrum domain is proposed in this paper. The algorithm, which adopts the layer-oriented method, generates the computer generated hologram by encoding the three-dimensional scene. Then the computer generated hologram is encoded into three pure phase functions by adopting the phase iterative algorithm based on angular spectrum domain,and the encryption process is completed. The three-dimensional scene encryption can improve the capacity of the information,and the three-phase iterative algorithm can guarantee the security of the encryption information. The numerical simulation results show that the algorithm proposed in this paper realized the encryption and decryption of three-dimensional scenes. At the same time, it can ensure the safety of the encrypted information and increase the capacity of the encrypted information.
基金Supported by the Fundamental Scientific Research Program of China Ministries and Commissions(B2220132013)
文摘An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.
文摘Encryption and decryption method of three-dimensional objects uses holograms computer-generated and suggests encoding stage. Information obtained amplitude and phase of a three-dimensional object using mathematically stage transforms overlap stored on a digital computer. Different three-dimensional images restore and develop the system for the expansion of the three-dimensional scenes and camera movement parameters. This article talks about these kinds of digital image processing algorithms as the reconstruction of three-dimensional model of the scene. In the present state, many such algorithms need to be improved in this paper proposing one of the options to improve the accuracy of such reconstruction.
文摘With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, such as urban construction, interior design, industrial simulation and tourism teaching. China's three-dimensional animation production started relatively late, but has achieved good results with the support of related advanced technology in the process of development. Computer virtual simulation technology is an important technical support in the production of three-dimensional animation. In this paper, firstly, the related content of computer virtual simulation technology was introduced. Then, the specific application of this technology in the production of three-dimensional animation was further elaborated, so as to provide some reference for the improvement of the production effect of three-dimensional animation in the future.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 10272094)
文摘The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.
文摘According to the features of the turning simulation, a simplified Whitted lighti ng model is proposed based on the analysis of Phong and other local illumination model. Moreover, in order to obtain the natural lighting effects, local ray tra cing algorithm is given to calculate the light intensity of every position durin g the course of the simulation. This method can calculate the refresh area befor e calculating the intersection line, simulate the machining environment accurate ly and reduce the calculating time. Finally, an example of the virtual cutting s cene is shown to demonstrate the effects of the global illumination model. If th e CUP is 1.3 G and the internal memory is 128 M, the refreshing time of virtual turning scene can be reduced by nine times.This study plays an important role in the enrichment of the virtual manufacturing theory and the promotion of the dev elopment of the advanced manufacturing technology.
文摘Through the analysis and comparison of shortcomings and advantages of existing technologies on object modeling in 3D applications,we propose a new modeling method for virtual scene based on multi-view image sequence to model irregular objects efficiently in 3D application.In 3D scene,this method can get better visual effect by tracking the viewer's real-time perspective position and projecting the photos from different perspectives dynamically.The philosophy of design,the steps of development and some other relevant topics are discussed in details,and the validity of the algorithm is analyzed.The results demonstrate that this method represents more superiority on simulating irregular objects by applying it to the modeling of virtual museum.
文摘Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.