Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance ...Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.展开更多
The bilayer poly(ethylene oxide)/multiple-walled carbon nanotubes(PEO/MWCNTs) and three-layer PEO/MWCNTs/PEO composite thin films were fabricated with the spraying process on the interdigitated transducers(IDTs) as ga...The bilayer poly(ethylene oxide)/multiple-walled carbon nanotubes(PEO/MWCNTs) and three-layer PEO/MWCNTs/PEO composite thin films were fabricated with the spraying process on the interdigitated transducers(IDTs) as gas sensors for toluene-sensing application.Compared with the bilayer thin film sensor,the sensor with three-layer thin films exhibited higher response values and better recovery property.The microstructures of sensing films were characterized by scanning electron microscopy(SEM) to indicate that the better sensing response of three-layer thin films might be ascribed to the sufficient adsorption of toluene molecules on the surfaces of upper and bottom PEO films.The selectivity of the three-layer film sensor was further investigated by comparing responses upon exposure to different interference vapors with the response to toluene exposure,and much higher response was observed in the case of toluene.Good repeatability of the three-layer film sensor was also observed.展开更多
基金supported by the National Natural Science Foundation of China(No.11627806)a Project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176066 and 61101031)
文摘The bilayer poly(ethylene oxide)/multiple-walled carbon nanotubes(PEO/MWCNTs) and three-layer PEO/MWCNTs/PEO composite thin films were fabricated with the spraying process on the interdigitated transducers(IDTs) as gas sensors for toluene-sensing application.Compared with the bilayer thin film sensor,the sensor with three-layer thin films exhibited higher response values and better recovery property.The microstructures of sensing films were characterized by scanning electron microscopy(SEM) to indicate that the better sensing response of three-layer thin films might be ascribed to the sufficient adsorption of toluene molecules on the surfaces of upper and bottom PEO films.The selectivity of the three-layer film sensor was further investigated by comparing responses upon exposure to different interference vapors with the response to toluene exposure,and much higher response was observed in the case of toluene.Good repeatability of the three-layer film sensor was also observed.