The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output fe...The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output feedback and optimization is proposed. Performance and robustness comparisons between the two-loop and classical three-loop topologies are made. Attempts to improve the classical three-loop topology are discussed. Despite the same open-loop structure, the classical three-loop autopilot shows distinct characteristics from a two-loop autopilot with PI compensator. Both the two-loop and three-loop topologies can stabilize a static unstable missile. However, the finite actuator resource is the crucial factor dominating autopilot function.展开更多
The structure characteristic of the three-loop autopilot is analyzed and the pole placement analytic algorithm is given. In order to ensure that the system will meet the stability requirement when taking the dynamic c...The structure characteristic of the three-loop autopilot is analyzed and the pole placement analytic algorithm is given. In order to ensure that the system will meet the stability requirement when taking the dynamic characteristics of all the hardware devices into account, the frequency of the open-loop crossover should be constrained. Based on the pole placement algorithm, a non-linear equation with the non-dominant pole as a variable and the open-loop crossover frequency as a con- straint is constructed. Solving the equation and getting the corresponding value of the non-dominant pole, the design of autopilot can be completed. Finally, through an example, it is shown that the method is convenient and practicable for the design of a three-loop autopilot.展开更多
Instead of normally tackling electric circuits by virtue oI the Klrctllaott's theorem wnose aim is to uerlvc voxt^gc, electric current, and electric impedence, our aim in this paper is to derive the characteristic fr...Instead of normally tackling electric circuits by virtue oI the Klrctllaott's theorem wnose aim is to uerlvc voxt^gc, electric current, and electric impedence, our aim in this paper is to derive the characteristic frequency of a three-loop mesoscopic LC circuit with three mutual inductances, e.g., for the radiating frequency of the three-loop LC oscillator, we adopt the invariant eigen-operator (lEO) method to realize our aim.展开更多
The open-loop crossover frequency is pointed as an important parameter for practical autopilot design. Since different gain designs may achieve the same open-loop crossover frequency, it should be neither considered a...The open-loop crossover frequency is pointed as an important parameter for practical autopilot design. Since different gain designs may achieve the same open-loop crossover frequency, it should be neither considered as a performance objective of the optimal autopilot design-schemes nor neglected. Besides, the main assignment of the autopilot is to drive the missile to track the acceleration commands, so the autopilot gain design should be evaluated directly according to the resultant tracking performance. For this purpose, an optimal design methodology of the three-loop missile autopilot is introduced based on constraint optimization technique, where the tracking performance is established analytically as the design objective and the open-loop crossover frequency is formed as inequality constraint function, both are manipulated in terms of stable characteristic parameters of the autopilot closed-loop. The proposed technique is implemented with the assistance of a numerical optimization algorithm which automatically adjusts the design parameters. Finally, numerical simulation results are provided to demonstrate the effectiveness and feasibility of the proposed approach compared with that in some references.展开更多
文摘The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output feedback and optimization is proposed. Performance and robustness comparisons between the two-loop and classical three-loop topologies are made. Attempts to improve the classical three-loop topology are discussed. Despite the same open-loop structure, the classical three-loop autopilot shows distinct characteristics from a two-loop autopilot with PI compensator. Both the two-loop and three-loop topologies can stabilize a static unstable missile. However, the finite actuator resource is the crucial factor dominating autopilot function.
文摘The structure characteristic of the three-loop autopilot is analyzed and the pole placement analytic algorithm is given. In order to ensure that the system will meet the stability requirement when taking the dynamic characteristics of all the hardware devices into account, the frequency of the open-loop crossover should be constrained. Based on the pole placement algorithm, a non-linear equation with the non-dominant pole as a variable and the open-loop crossover frequency as a con- straint is constructed. Solving the equation and getting the corresponding value of the non-dominant pole, the design of autopilot can be completed. Finally, through an example, it is shown that the method is convenient and practicable for the design of a three-loop autopilot.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)
文摘Instead of normally tackling electric circuits by virtue oI the Klrctllaott's theorem wnose aim is to uerlvc voxt^gc, electric current, and electric impedence, our aim in this paper is to derive the characteristic frequency of a three-loop mesoscopic LC circuit with three mutual inductances, e.g., for the radiating frequency of the three-loop LC oscillator, we adopt the invariant eigen-operator (lEO) method to realize our aim.
文摘The open-loop crossover frequency is pointed as an important parameter for practical autopilot design. Since different gain designs may achieve the same open-loop crossover frequency, it should be neither considered as a performance objective of the optimal autopilot design-schemes nor neglected. Besides, the main assignment of the autopilot is to drive the missile to track the acceleration commands, so the autopilot gain design should be evaluated directly according to the resultant tracking performance. For this purpose, an optimal design methodology of the three-loop missile autopilot is introduced based on constraint optimization technique, where the tracking performance is established analytically as the design objective and the open-loop crossover frequency is formed as inequality constraint function, both are manipulated in terms of stable characteristic parameters of the autopilot closed-loop. The proposed technique is implemented with the assistance of a numerical optimization algorithm which automatically adjusts the design parameters. Finally, numerical simulation results are provided to demonstrate the effectiveness and feasibility of the proposed approach compared with that in some references.