To study the flow characteristics of three-phase foam in gob area,different perfusion experiments in coal mine gob were designed and put forward in the paper.Through the observation of flow range,flow characteristics ...To study the flow characteristics of three-phase foam in gob area,different perfusion experiments in coal mine gob were designed and put forward in the paper.Through the observation of flow range,flow characteristics of three phase foam were analyzed with different flow rates.And,unsteady seepage process of three-phase foam was simulated with CFD software.Base on experiment and numerical simulation results,flow characteristics of three-phase foam and its major influence factors are discussed,and the optimal arrangement distribution of mine fire control drills is also determined.Research results show that the flow range and stacking height of three-phase foam in gob are significantly influenced by gravity.The vertical stacking height and horizontal diffusion distance of three-phase foam are also directly related to the flow volume of foam perfusion,the larger flow single hole perfusion volume,the higher stacking height and the longer diffusion distance could be obtained.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen e...As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions.展开更多
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit....A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.展开更多
BACKGROUND Accurate preoperative staging of gastric cancer(GC),a common malignant tumor worldwide,is critical for appropriate treatment plans and prognosis.Dynamic three-phase enhanced computed tomography(CT)scanning ...BACKGROUND Accurate preoperative staging of gastric cancer(GC),a common malignant tumor worldwide,is critical for appropriate treatment plans and prognosis.Dynamic three-phase enhanced computed tomography(CT)scanning for preoperative staging of GC has limitations in evaluating tumor angiogenesis.CD34,a marker on vascular endothelial cell surfaces,is promising in evaluating tumor angiogenesis.We explored the value of their combination for preoperative staging of GC to improve the efficacy and prognosis of patients with GC.Medical records of 106 patients with GC treated at the First People's Hospital of Lianyungang between February 2021 and January 2023 were retrospectively studied.All patients underwent three-phase dynamic contrast-enhanced CT scanning before surgery,and CD34 was detected in gastroscopic biopsy specimens.Using surgical and pathological results as the gold standard,the diagnostic results of three-phase dynamic contrast-enhanced CT scanning at different T and N stages were analyzed,and the expression of CD34-marked microvessel density(MVD)at different T and N stages was determined.The specificity and sensitivity of three-phase dynamic contrast-enhanced CT and CD34 in T and N staging were calculated;those of the combined diagnosis of the two were evaluated in parallel.Independent factors affecting lymph node metastasis were analyzed using multiple logistic regression.RESULTS The accuracy of three-phase dynamic contrast-enhanced CT scanning in diagnosing stages T1,T2,T3 and T4 were 68.00%,75.00%,79.41%,and 73.68%,respectively,and for diagnosing stages N0,N1,N2,and N3 were 75.68%,74.07%,85.00%,and 77.27%,respectively.CD34-marked MVD expression increased with increasing T and N stages.Specificity and sensitivity of three-phase dynamic contrast-enhanced CT in T staging were 86.79%and 88.68%;for N staging,89.06%and 92.86%;for CD34 in T staging,64.15%and 88.68%;and for CD34 in N staging,84.38%and 78.57%,respectively.Specificity and sensitivity of joint diagnosis in T staging were 55.68%and 98.72%,and N staging were 75.15%and 98.47%,respectively,with the area under the curve for diagnosis improving accordingly.According to multivariate analysis,a longer tumor diameter,higher pathological T stage,lower differ-entiation degree,and higher expression of CD34-marked MVD were independent risk factors for lymph node metastasis in patients with GC.CONCLUSION With high accuracy in preoperatively determining the invasion depth and lymph node metastasis of GC,CD34 expression and three-phase dynamic contrast-enhanced CT can provide a reliable basis for surgical resection.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
BACKGROUND Endoscopic rubber band ligation(ERBL)is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain.AIM To evaluate satisfaction,long-...BACKGROUND Endoscopic rubber band ligation(ERBL)is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain.AIM To evaluate satisfaction,long-term recurrence,and post-procedural pain in managing internal hemorrhoids using a combination of polidocanol foam sclerotherapy and ERBL.METHODS This was a prospective,multicenter,randomized study.A total of 195 consecutive patients diagnosed with grade II-III internal hemorrhoids were enrolled from four tertiary hospitals and randomly divided into a cap-assisted endoscopic polidocanol foam sclerobanding(EFSB)or an ERBL group.All patients were followed-up for 12 months.Symptom-based severity and post-procedural pain were assessed using a hemorrhoid severity score(HSS)and a visual analog scale(VAS).Continuous variables were reported as medians and interquartile range.RESULTS One hundred and ninety-five patients were enrolled,with 98 in the EFSB group.HSS was lower in the EFSB group than in the ERBL group at 8 weeks[4.0(3.0-5.0)vs 5.0(4.0-6.0),P=0.003]and 12-month[2.0(1.0-3.0)vs 3.0(2.0-3.0),P<0.001]of follow-up.The prolapse recurrence rate was lower in the EFSB group at 12 months(11.2%vs 21.6%,P=0.038).Multiple linear regression analysis demonstrated that EFSB treatment[B=-0.915,95%confidence interval(CI):−1.301 to−0.530,P=0.001]and rubber band number(B=0.843,95%CI:0.595-1.092,P<0.001)were negatively and independently associated with the VAS score 24 hours post-procedure.The median VAS was lower in the EFSB group than in the ERBL[2.0(1.0-3.0)vs 3.0(2.0-4.0),P<0.001].CONCLUSION Cap-assisted EFSB provided long-term satisfaction and effective relief from the recurrence of prolapse and pain 24 hours post-procedure.展开更多
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig...Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for thei...One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for their purifications. As such, three-phase partitioning (TPP) was used to purify protease from moringa (Moringa oleifera). TPP is an emerging, promising, non-chromatographic and economical technology which is simple, quick, efficient and often one-step process for the separation and purification of bioactive molecules from natural sources. It involves the addition of salt (ammonium sulphate) to the crude extract followed by the addition of an organic solvent (butanol). The protein appears as an interfacial precipitate between upper organic solvent and lower aqueous phases. The various conditions such as ammonium sulphate, ratio of crude extract to t-butanol and pH which are required for attaining efficient purification of the protease fractions were optimized. Under optimized conditions, it was seen that, 35% of ammonium sulphate saturation with 1:0.75 ratio of crude extract to t-butanol at pH 7 gave 4.94-fold purification with 96.20% activity yield of protease in the middle phase of the TPP system. The purified enzyme from Moringa oleifera has no antimicrobial effect on the pathogenic bacteria tested. However, this purified enzyme, can be considered as a promising agent, cheap, and safe source which is suitable for using in various industries.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to i...Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.展开更多
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood...With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.展开更多
Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in fa...Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.展开更多
Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties...Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi...Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51104154,51134020)Central Subordinate University Basic Scientific Research Foundation of China(No.2011QNA05)CUMT Innovation and Entrepreneurship Fund for Undergraduates of China(Nos.201403,201503)
文摘To study the flow characteristics of three-phase foam in gob area,different perfusion experiments in coal mine gob were designed and put forward in the paper.Through the observation of flow range,flow characteristics of three phase foam were analyzed with different flow rates.And,unsteady seepage process of three-phase foam was simulated with CFD software.Base on experiment and numerical simulation results,flow characteristics of three-phase foam and its major influence factors are discussed,and the optimal arrangement distribution of mine fire control drills is also determined.Research results show that the flow range and stacking height of three-phase foam in gob are significantly influenced by gravity.The vertical stacking height and horizontal diffusion distance of three-phase foam are also directly related to the flow volume of foam perfusion,the larger flow single hole perfusion volume,the higher stacking height and the longer diffusion distance could be obtained.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金supported by the National Natural Science Foundation of China(U21A20332,52103226,52202275,52203314,and 12204253)the Distinguished Young Scholars Fund of Jiangsu Province(BK20220061)the Fellowship of China Postdoctoral Science Foundation(2021 M702382)。
文摘As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions.
基金This research was supported by the Science and Technology Plan Project of Sichuan Province(No.21YYJC3324)the Science and Technology Plan Project of Sichuan Province(No.2022YFQ0104).
文摘A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.
文摘BACKGROUND Accurate preoperative staging of gastric cancer(GC),a common malignant tumor worldwide,is critical for appropriate treatment plans and prognosis.Dynamic three-phase enhanced computed tomography(CT)scanning for preoperative staging of GC has limitations in evaluating tumor angiogenesis.CD34,a marker on vascular endothelial cell surfaces,is promising in evaluating tumor angiogenesis.We explored the value of their combination for preoperative staging of GC to improve the efficacy and prognosis of patients with GC.Medical records of 106 patients with GC treated at the First People's Hospital of Lianyungang between February 2021 and January 2023 were retrospectively studied.All patients underwent three-phase dynamic contrast-enhanced CT scanning before surgery,and CD34 was detected in gastroscopic biopsy specimens.Using surgical and pathological results as the gold standard,the diagnostic results of three-phase dynamic contrast-enhanced CT scanning at different T and N stages were analyzed,and the expression of CD34-marked microvessel density(MVD)at different T and N stages was determined.The specificity and sensitivity of three-phase dynamic contrast-enhanced CT and CD34 in T and N staging were calculated;those of the combined diagnosis of the two were evaluated in parallel.Independent factors affecting lymph node metastasis were analyzed using multiple logistic regression.RESULTS The accuracy of three-phase dynamic contrast-enhanced CT scanning in diagnosing stages T1,T2,T3 and T4 were 68.00%,75.00%,79.41%,and 73.68%,respectively,and for diagnosing stages N0,N1,N2,and N3 were 75.68%,74.07%,85.00%,and 77.27%,respectively.CD34-marked MVD expression increased with increasing T and N stages.Specificity and sensitivity of three-phase dynamic contrast-enhanced CT in T staging were 86.79%and 88.68%;for N staging,89.06%and 92.86%;for CD34 in T staging,64.15%and 88.68%;and for CD34 in N staging,84.38%and 78.57%,respectively.Specificity and sensitivity of joint diagnosis in T staging were 55.68%and 98.72%,and N staging were 75.15%and 98.47%,respectively,with the area under the curve for diagnosis improving accordingly.According to multivariate analysis,a longer tumor diameter,higher pathological T stage,lower differ-entiation degree,and higher expression of CD34-marked MVD were independent risk factors for lymph node metastasis in patients with GC.CONCLUSION With high accuracy in preoperatively determining the invasion depth and lymph node metastasis of GC,CD34 expression and three-phase dynamic contrast-enhanced CT can provide a reliable basis for surgical resection.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
基金Supported by the Hospital Funded Clinical Research of Xinhua Hospital,No.19XHCR16D.
文摘BACKGROUND Endoscopic rubber band ligation(ERBL)is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain.AIM To evaluate satisfaction,long-term recurrence,and post-procedural pain in managing internal hemorrhoids using a combination of polidocanol foam sclerotherapy and ERBL.METHODS This was a prospective,multicenter,randomized study.A total of 195 consecutive patients diagnosed with grade II-III internal hemorrhoids were enrolled from four tertiary hospitals and randomly divided into a cap-assisted endoscopic polidocanol foam sclerobanding(EFSB)or an ERBL group.All patients were followed-up for 12 months.Symptom-based severity and post-procedural pain were assessed using a hemorrhoid severity score(HSS)and a visual analog scale(VAS).Continuous variables were reported as medians and interquartile range.RESULTS One hundred and ninety-five patients were enrolled,with 98 in the EFSB group.HSS was lower in the EFSB group than in the ERBL group at 8 weeks[4.0(3.0-5.0)vs 5.0(4.0-6.0),P=0.003]and 12-month[2.0(1.0-3.0)vs 3.0(2.0-3.0),P<0.001]of follow-up.The prolapse recurrence rate was lower in the EFSB group at 12 months(11.2%vs 21.6%,P=0.038).Multiple linear regression analysis demonstrated that EFSB treatment[B=-0.915,95%confidence interval(CI):−1.301 to−0.530,P=0.001]and rubber band number(B=0.843,95%CI:0.595-1.092,P<0.001)were negatively and independently associated with the VAS score 24 hours post-procedure.The median VAS was lower in the EFSB group than in the ERBL[2.0(1.0-3.0)vs 3.0(2.0-4.0),P<0.001].CONCLUSION Cap-assisted EFSB provided long-term satisfaction and effective relief from the recurrence of prolapse and pain 24 hours post-procedure.
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
基金the National Natural Science Foundation of China (52273083, 51903145)Key Research and Development Project of Shaanxi Province (2023-YBGY-476)+1 种基金Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0691)National College Students Innovation and Entrepreneurship Training Program (202310699172)
文摘Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
文摘One of plant-based products for dental care is plant-based proteolytic enzymes which are principally proteases. In order not to damage the protein and bioactive content, an efficient method should be employed for their purifications. As such, three-phase partitioning (TPP) was used to purify protease from moringa (Moringa oleifera). TPP is an emerging, promising, non-chromatographic and economical technology which is simple, quick, efficient and often one-step process for the separation and purification of bioactive molecules from natural sources. It involves the addition of salt (ammonium sulphate) to the crude extract followed by the addition of an organic solvent (butanol). The protein appears as an interfacial precipitate between upper organic solvent and lower aqueous phases. The various conditions such as ammonium sulphate, ratio of crude extract to t-butanol and pH which are required for attaining efficient purification of the protease fractions were optimized. Under optimized conditions, it was seen that, 35% of ammonium sulphate saturation with 1:0.75 ratio of crude extract to t-butanol at pH 7 gave 4.94-fold purification with 96.20% activity yield of protease in the middle phase of the TPP system. The purified enzyme from Moringa oleifera has no antimicrobial effect on the pathogenic bacteria tested. However, this purified enzyme, can be considered as a promising agent, cheap, and safe source which is suitable for using in various industries.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金supported by the Climate Change Response Project (NRF-2019M1A2A2065612)the Brainlink Project (NRF2022H1D3A3A01081140)+3 种基金the NRF-2021R1A4A3027878 and the No. RS-2023-00212273 funded by the Ministry of Science and ICT of Korea via National Research Foundationresearch funds from Hanhwa Solutions Chemicals (1.220029.01)UNIST (1.190013.01)supported by the Institute for Basic Science (IBS-R019-D1)。
文摘Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.
基金Supported by National Science and Technology Major Project of China (51674271)Major Technical Field Test of PetroChina (2019F-33)。
文摘With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.U2240210,52279098)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200525)the Fundamental Research Funds for the Central Universities(Grant No.B230201021).We express our gratitude to PETRONAS and Shell Global Solution International B.V.for their support of this work.
文摘Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.
文摘Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金supported by the National Natural Science Foundation of China(No.21774139)China,Key Research and Development Program of Shanxi Province,China(No,202102040201009)special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology and the Fund for Shanxi“1331 Project”.Thanks to Ningbo Kejiang Culture Sci.&Tech.Development Co.,Ltd.for the help in schematic drawing。
文摘Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.