Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering...Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering community because of its simplicity,stability,and flexibility in testing and evaluation.The SCB test has become a common method to study the cracking resistance of asphalt mixture in recent years.This paper mainly summarizes the overview of the SCB test,summarizes some research results and common characterization parameters of the SCB test method in monotone test and fatigue test in recent years,and predicts and suggests the research direction of the SCB test in the future.It is found that the research on the monotonic SCB test is more comprehensive,and the research on the SCB fatigue test needs to be further improved in the aspects of loading mode,characterization parameter selection,and so on.Researchers can flexibly adjust the geometric dimensions and the test parameters of semi-cylindrical specimens,and conduct comprehensive analysis combined with the results of numerical simulation.The crack resistance of asphalt mixture can be comprehensively evaluated by fracture energy,fracture toughness,stiffness,flexibility index and other fracture indicators,combined with the crack propagation of the specimen.The analysis of numerical simulation can confirm the test results.In order to standardize the setting of fatigue parameters for future application,it is necessary to standardize the setting of bending performance.展开更多
The mechanical behavior within the processing zone of concrete material can be well described by the crack bridging performance. The material properties related to the crack bridging are cracking strength, tensile s...The mechanical behavior within the processing zone of concrete material can be well described by the crack bridging performance. The material properties related to the crack bridging are cracking strength, tensile strength, and the stress-crack width relationship. In general, the cracking strength is lower than the tensile strength of concrete. Crack propagation is governed by the cracking strength. This paper presents a method to determine the above material parameters from a three-point bending test. In the experiment, a pre-notched beam is used. Corresponding values of load, crack mouth opening displacement, and load point displacement are simultaneously recorded. From experimentally determined load-crack mouth opening displacement curves, the above-mentioned crack bridging parameters are deduced by a numerical procedure. The method can be used to evaluate the influence of coarse aggregate and cementitious matrix strength on the stress-crack width relationship, tensile strength, and fracture energy of concrete.展开更多
Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated...Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN.展开更多
In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive mod...In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.展开更多
A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composit...A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.展开更多
A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterize...A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet(perforation ratio).While for large-scale engineering applications like the decks of cargo vehicles and transportation ships,the perforations are needed to facilitate the fabrication process(e.g.,laser welding)as well as service maintenance,it is demonstrated that these perforations,when properly designed,can also enhance the resistance of the sandwich to bending.For illustration,fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs.Further,the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes:(1)bending failure,i.e.,yielding of beam cross-section and buckling of top facesheet caused by bending moment;(2)shear failure,i.e.,yielding and buckling of core webs due to shear forcing.The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios.As the perfo-ration ratio is increased,the load of shear failure increases due to thickening core webs,while that of bending failure decreases due to the weakening bottom facesheet.Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal,leading to significantly enhanced failure load(up to 60%increase)relative to that of a non-perforated sandwich beam with equal mass.展开更多
This paper presents an attempt at the application of catastrophe theory to the stability analysis of J-controlled crack growth in three-point bending specimens. By introducing the solutions of J-integral in the comple...This paper presents an attempt at the application of catastrophe theory to the stability analysis of J-controlled crack growth in three-point bending specimens. By introducing the solutions of J-integral in the completely yielding state for the ideal plastic material, the critical condition of losing stability for the crack propagation in the specimen is obtained, based on the cusp catastrophe theory. The process of the crack growth from geometrical sense is described.展开更多
Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-pla...Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-plasma-sprayed(APS) on a stainless steel substrate. A modified three-point bending test was adopted to initiate and propagate the topcoat/bondcoat(TC/BC)interfacial crack. After a complete delamination, the fracture surfaces were examined by an optical microscope, which shows that the cracking plane was merely on the TC/BC interface. Based on the experimental results of load–displacement and crack length–displacement,the strain energy release rate G for crack propagation was calculated, and the averaged magnitude was 77.1 J/m^2.Repeatable results have indicated that the method can be used for the evaluation of interfacial fracture toughness in thermal barrier coatings and other multi-layer structures.展开更多
The dynamic fracture behaviors of the extruded 2024-T4 and 7075-T6 aluminum alloys are investigated by using an instrumented drop tower machine.The specimens are made from a 25 mm diameter extruded circular rod.The dy...The dynamic fracture behaviors of the extruded 2024-T4 and 7075-T6 aluminum alloys are investigated by using an instrumented drop tower machine.The specimens are made from a 25 mm diameter extruded circular rod.The dynamic three-point bending tests of each alloy are carried out at different impact velocities.The initiation fracture toughness and average propagation fracture toughness of 2024-T4 and 7075-T6 are determined at different loading rates.The results show that both the initiation toughness and the propagation toughness increase with the loading rate.Further,the difference between the fracture toughness behaviors of 2024-T4 and 7075-T6 is found to be dependent on the variation of fracture mechanism.The comprehensive fractographic investigations of the fracture surfaces clearly demonstrate that the fracture mode of 2024-T4 is predominantly transgranular fracture with high density small-sized dimples,and the fracture mode of 7075-T6 is mainly intergranular fracture with many intermetallic particles in the bottom of voids located in the fracture surface.展开更多
The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in wh...The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in which the damage during hot stamping process was introduced into the service response.The constitutive model was applied into the three-point bending simulation of a hot stamped beam,and then the influences of forming damage on the load-carrying capacity and cracks propagation were investigated.The results show that the forming damage reduces the maximum load capacity of the hot stamped beam by 7.5%.It also causes the crack to occur earlier and promotes crack to propagate along the radial direction of the punch.展开更多
High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (POP) is a promising three-dimensi...High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (POP) is a promising three-dimensional high- density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results.展开更多
Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually ...Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually have unique shape. Its geometrical shape assumed as tapered hollow pipe. This study aims to find the effect of bamboo taper to its strength properties on center point bending test. The ratio between the Modulus of Rupture (S~) calculated in the center point, and the maximum bending stress along the beam is called strength ratio of taper (Ct). The theoretical calculation results Ct value is 1 if the taper lower than 0.023, while Ct value become lower if the taper is higher than 0.023. The survey on Ampel (Bambusa vulgaris Schrad.), Tali (Gigantochloa apus (BI. Ex Schult. f) Kurz), Gombong (Gigantochloa verticillata (Willd.) Munro), and Mayan (Gigantochloa robusta Kurz.) found that the overall taper range is -0.0047-0.0088 and 0-0.0127 for inner and outer taper respectively. On that overall range the Ct value is always 1, so it is reasonable to ignore the taper effect on one point bending test.展开更多
The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this...The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.展开更多
In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many ...In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many application which they are used composite materials. The glass transition temperature can be measured at the point of inflection for "the curve of variation of the deflection and temperature. The results show that, the glass transition temperature is affected by the type of the reinforcement of the composites. On the other hand, the glass transition temperature of the wool composite is higher than the other.展开更多
The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half c...The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.展开更多
The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that ...The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that the mechanical properties of the material (in a tubular form) are quite different from those found in the standard tensile tests (when the materials are in bar forms). This is one of the major reasons that result in the discrepancies in the outcomes of experimental study, FEM calculations, and spring-back analysis. It is therefore of crucial importance to study the mechanical properties of the materials in their tubular forms. The experiments and FEM simulations prove that the spring-back angle is significantly affected by the mechanical properties of the materials. The angle decreases accordingly with plastic modulus, but changes inversely with the hardening index and elastic modulus The spring-back angle is also affected by the conditions of tube deformation: it increases accordingly with the relative bending radius but changes inversely with the relative wall thickness. In addition, the spring-back angle increases nonlinearly with the bending angle.展开更多
The influence of two main characteristics of steel fiber, the aspect ratio (Df) and volume fraction (ρf), on the bending strength of Layered Steel Fiber Reinforced Concrete (LSFRC) is investigated by using orth...The influence of two main characteristics of steel fiber, the aspect ratio (Df) and volume fraction (ρf), on the bending strength of Layered Steel Fiber Reinforced Concrete (LSFRC) is investigated by using orthogonal test. Via the variance analysis on the experimental results and trend analysis on the two characteristics, Df is found significantly related to the bending strength of LSFRC. The influence ratio is 63.3%. The bending strength of LSFRC increases if Df increases, makes better when Df reaches 100. ρf has ordinary influence on the bending strength of LSFRC. The influence ratio is 29.2%. Other characteristics, such as the shape of steel fiber and the mix proportion, have less influence. The best ρf contributing to the bending strength of LSFRC is 1.5 %. If ρf is greater than 1.5%, it has negative influence on the bending strength of LSFRC. So, ρf makes a limited contribution to the bending strength of LSFRC.展开更多
Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and she...Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.展开更多
The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by u...The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.展开更多
Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the eff...Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600C.Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre-and postbending analysis.As the prebending temperature increased from 25C to 600C,the retained austenite(RA)volume fraction decreased,and the RA transformed to bainite at temperatures above 400C.The springback angle was positively correlated with the prebending RA volume fraction,with the smallest springback angle achieved at 400C.Additionally,the springback angle was positively correlated with the bending angle,because the RA transformation ratio contributed to increased strain hardening.Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(No.51968006).
文摘Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering community because of its simplicity,stability,and flexibility in testing and evaluation.The SCB test has become a common method to study the cracking resistance of asphalt mixture in recent years.This paper mainly summarizes the overview of the SCB test,summarizes some research results and common characterization parameters of the SCB test method in monotone test and fatigue test in recent years,and predicts and suggests the research direction of the SCB test in the future.It is found that the research on the monotonic SCB test is more comprehensive,and the research on the SCB fatigue test needs to be further improved in the aspects of loading mode,characterization parameter selection,and so on.Researchers can flexibly adjust the geometric dimensions and the test parameters of semi-cylindrical specimens,and conduct comprehensive analysis combined with the results of numerical simulation.The crack resistance of asphalt mixture can be comprehensively evaluated by fracture energy,fracture toughness,stiffness,flexibility index and other fracture indicators,combined with the crack propagation of the specimen.The analysis of numerical simulation can confirm the test results.In order to standardize the setting of fatigue parameters for future application,it is necessary to standardize the setting of bending performance.
文摘The mechanical behavior within the processing zone of concrete material can be well described by the crack bridging performance. The material properties related to the crack bridging are cracking strength, tensile strength, and the stress-crack width relationship. In general, the cracking strength is lower than the tensile strength of concrete. Crack propagation is governed by the cracking strength. This paper presents a method to determine the above material parameters from a three-point bending test. In the experiment, a pre-notched beam is used. Corresponding values of load, crack mouth opening displacement, and load point displacement are simultaneously recorded. From experimentally determined load-crack mouth opening displacement curves, the above-mentioned crack bridging parameters are deduced by a numerical procedure. The method can be used to evaluate the influence of coarse aggregate and cementitious matrix strength on the stress-crack width relationship, tensile strength, and fracture energy of concrete.
基金Projects(U1332110,50704012)supported by the National Natural Science Foundation of ChinaProject(F10-205-1-59)supported by Science and Technology Foundation of Shenyang,China
文摘Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN.
基金funding support from the National Key Research and Development Program of China(Grant No.2022YFC3102402)as well as from the National Natural Science Foundation of China(Grant No.51879257).
文摘In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.
基金Project(SS2015AA031101)supported by the National High-tech R&D Program of China
文摘A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.
基金supported by the National Natural Science Foundation of China (Grants 11472209, 11472208)the China Postdoctoral Science Foundation (Grant 2016M600782)+2 种基金the Postdoctoral Scientific Research Project of Shaanxi Province (Grant 2016BSHYDZZ18)the Fundamental Research Funds for Xi’an Jiaotong University (Grant xjj2015102)the Jiangsu Province Key Laboratory of High-end Structural Materials (Grant hsm1305)
文摘A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet(perforation ratio).While for large-scale engineering applications like the decks of cargo vehicles and transportation ships,the perforations are needed to facilitate the fabrication process(e.g.,laser welding)as well as service maintenance,it is demonstrated that these perforations,when properly designed,can also enhance the resistance of the sandwich to bending.For illustration,fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs.Further,the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes:(1)bending failure,i.e.,yielding of beam cross-section and buckling of top facesheet caused by bending moment;(2)shear failure,i.e.,yielding and buckling of core webs due to shear forcing.The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios.As the perfo-ration ratio is increased,the load of shear failure increases due to thickening core webs,while that of bending failure decreases due to the weakening bottom facesheet.Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal,leading to significantly enhanced failure load(up to 60%increase)relative to that of a non-perforated sandwich beam with equal mass.
文摘This paper presents an attempt at the application of catastrophe theory to the stability analysis of J-controlled crack growth in three-point bending specimens. By introducing the solutions of J-integral in the completely yielding state for the ideal plastic material, the critical condition of losing stability for the crack propagation in the specimen is obtained, based on the cusp catastrophe theory. The process of the crack growth from geometrical sense is described.
基金financial support from the National Natural Science Foundation of China(11232008,11372118,and 11672345)the Natural Science Foundation of Jiangsu Province(BK20161341)the Six Talent Peaks Project in Jiangsu Province(2016-HKHT-004)
文摘Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-plasma-sprayed(APS) on a stainless steel substrate. A modified three-point bending test was adopted to initiate and propagate the topcoat/bondcoat(TC/BC)interfacial crack. After a complete delamination, the fracture surfaces were examined by an optical microscope, which shows that the cracking plane was merely on the TC/BC interface. Based on the experimental results of load–displacement and crack length–displacement,the strain energy release rate G for crack propagation was calculated, and the averaged magnitude was 77.1 J/m^2.Repeatable results have indicated that the method can be used for the evaluation of interfacial fracture toughness in thermal barrier coatings and other multi-layer structures.
基金supported by the NatiS100onal Science Foundation of China under Grant No.11072119the Defense Industrial Technology Development Program under Grant No.B1520110003+2 种基金the K.C.Wong Magna Foundation of Ningbo University,Chinaa grant from the Department of Education of Zhejiang Province through the Impact and Safety of Costal Engineering Initiativea COE Program at Ningbo University
文摘The dynamic fracture behaviors of the extruded 2024-T4 and 7075-T6 aluminum alloys are investigated by using an instrumented drop tower machine.The specimens are made from a 25 mm diameter extruded circular rod.The dynamic three-point bending tests of each alloy are carried out at different impact velocities.The initiation fracture toughness and average propagation fracture toughness of 2024-T4 and 7075-T6 are determined at different loading rates.The results show that both the initiation toughness and the propagation toughness increase with the loading rate.Further,the difference between the fracture toughness behaviors of 2024-T4 and 7075-T6 is found to be dependent on the variation of fracture mechanism.The comprehensive fractographic investigations of the fracture surfaces clearly demonstrate that the fracture mode of 2024-T4 is predominantly transgranular fracture with high density small-sized dimples,and the fracture mode of 7075-T6 is mainly intergranular fracture with many intermetallic particles in the bottom of voids located in the fracture surface.
基金Supported by the National Natural Science Foundation of China(5137520151775227)。
文摘The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in which the damage during hot stamping process was introduced into the service response.The constitutive model was applied into the three-point bending simulation of a hot stamped beam,and then the influences of forming damage on the load-carrying capacity and cracks propagation were investigated.The results show that the forming damage reduces the maximum load capacity of the hot stamped beam by 7.5%.It also causes the crack to occur earlier and promotes crack to propagate along the radial direction of the punch.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.11072124 and 11272173)the National Basic Research Program of China(Grant No.2010CB631006)the State Key Laboratory of Advanced Metals and Materials, China(Grant No.2010ZD-04)
文摘High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (POP) is a promising three-dimensional high- density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results.
文摘Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually have unique shape. Its geometrical shape assumed as tapered hollow pipe. This study aims to find the effect of bamboo taper to its strength properties on center point bending test. The ratio between the Modulus of Rupture (S~) calculated in the center point, and the maximum bending stress along the beam is called strength ratio of taper (Ct). The theoretical calculation results Ct value is 1 if the taper lower than 0.023, while Ct value become lower if the taper is higher than 0.023. The survey on Ampel (Bambusa vulgaris Schrad.), Tali (Gigantochloa apus (BI. Ex Schult. f) Kurz), Gombong (Gigantochloa verticillata (Willd.) Munro), and Mayan (Gigantochloa robusta Kurz.) found that the overall taper range is -0.0047-0.0088 and 0-0.0127 for inner and outer taper respectively. On that overall range the Ct value is always 1, so it is reasonable to ignore the taper effect on one point bending test.
文摘The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.
文摘In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many application which they are used composite materials. The glass transition temperature can be measured at the point of inflection for "the curve of variation of the deflection and temperature. The results show that, the glass transition temperature is affected by the type of the reinforcement of the composites. On the other hand, the glass transition temperature of the wool composite is higher than the other.
文摘The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.
文摘The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that the mechanical properties of the material (in a tubular form) are quite different from those found in the standard tensile tests (when the materials are in bar forms). This is one of the major reasons that result in the discrepancies in the outcomes of experimental study, FEM calculations, and spring-back analysis. It is therefore of crucial importance to study the mechanical properties of the materials in their tubular forms. The experiments and FEM simulations prove that the spring-back angle is significantly affected by the mechanical properties of the materials. The angle decreases accordingly with plastic modulus, but changes inversely with the hardening index and elastic modulus The spring-back angle is also affected by the conditions of tube deformation: it increases accordingly with the relative bending radius but changes inversely with the relative wall thickness. In addition, the spring-back angle increases nonlinearly with the bending angle.
文摘The influence of two main characteristics of steel fiber, the aspect ratio (Df) and volume fraction (ρf), on the bending strength of Layered Steel Fiber Reinforced Concrete (LSFRC) is investigated by using orthogonal test. Via the variance analysis on the experimental results and trend analysis on the two characteristics, Df is found significantly related to the bending strength of LSFRC. The influence ratio is 63.3%. The bending strength of LSFRC increases if Df increases, makes better when Df reaches 100. ρf has ordinary influence on the bending strength of LSFRC. The influence ratio is 29.2%. Other characteristics, such as the shape of steel fiber and the mix proportion, have less influence. The best ρf contributing to the bending strength of LSFRC is 1.5 %. If ρf is greater than 1.5%, it has negative influence on the bending strength of LSFRC. So, ρf makes a limited contribution to the bending strength of LSFRC.
基金Projects(U1664252,51605234)supported by the National Natural Science Foundation of ChinaProject(2016YFB0101700)supported by the National Key Research and Development Program of ChinaProject(31665004)supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.
基金Project(06JJ20094) supported by the Natural Science Foundation of Hunan Province, China
文摘The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
基金This research was funded by Faculty of Engineering,King Mongkut’s Institute of Technology Ladkrabang.
文摘Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600C.Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre-and postbending analysis.As the prebending temperature increased from 25C to 600C,the retained austenite(RA)volume fraction decreased,and the RA transformed to bainite at temperatures above 400C.The springback angle was positively correlated with the prebending RA volume fraction,with the smallest springback angle achieved at 400C.Additionally,the springback angle was positively correlated with the bending angle,because the RA transformation ratio contributed to increased strain hardening.Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased.