Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address...Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.展开更多
In this paper the primary configuration and formulae of design parameters of the intermediate frequency bend machine( 1450)are introduced and the main points of its design are explained.
针对大型提花机承受载荷时易发生弯曲变形导致拉刀提升高度不够,使直针钩子无法被电磁装置吸附的问题,首先对拉刀结构、载荷以及曲柄滑块驱动机构运动情况进行分析。其次,基于变截面梁理论和结构优化的方法,采用非均匀有理B样条(Non-Uni...针对大型提花机承受载荷时易发生弯曲变形导致拉刀提升高度不够,使直针钩子无法被电磁装置吸附的问题,首先对拉刀结构、载荷以及曲柄滑块驱动机构运动情况进行分析。其次,基于变截面梁理论和结构优化的方法,采用非均匀有理B样条(Non-Uniform Rational B-Splines,NURBS)曲线表达拉刀侧面、截面形状,通过数值方法计算拉刀截面惯性矩函数、弯矩函数,并通过有限差分法计算拉刀变形量。通过有限元方法(Finite Element Method,FEM)、等效为等截面梁的方法对挠度计算方法进行验证,误差在10%以内。最后,以最小质量为目标,采用原-对偶不可行内点算法对拉刀结构进行优化。优化结果表明,相较于优化初值模型,拉刀质量减小约17%,最大挠度减小约2667%。展开更多
文摘Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.
文摘In this paper the primary configuration and formulae of design parameters of the intermediate frequency bend machine( 1450)are introduced and the main points of its design are explained.
文摘针对大型提花机承受载荷时易发生弯曲变形导致拉刀提升高度不够,使直针钩子无法被电磁装置吸附的问题,首先对拉刀结构、载荷以及曲柄滑块驱动机构运动情况进行分析。其次,基于变截面梁理论和结构优化的方法,采用非均匀有理B样条(Non-Uniform Rational B-Splines,NURBS)曲线表达拉刀侧面、截面形状,通过数值方法计算拉刀截面惯性矩函数、弯矩函数,并通过有限差分法计算拉刀变形量。通过有限元方法(Finite Element Method,FEM)、等效为等截面梁的方法对挠度计算方法进行验证,误差在10%以内。最后,以最小质量为目标,采用原-对偶不可行内点算法对拉刀结构进行优化。优化结果表明,相较于优化初值模型,拉刀质量减小约17%,最大挠度减小约2667%。