In this paper, we present an innovative non–linear, discrete, dynamical system trying to model the historic battle of Salamis between Greeks and Persians. September 2020 marks the anniversary of the 2500 years that h...In this paper, we present an innovative non–linear, discrete, dynamical system trying to model the historic battle of Salamis between Greeks and Persians. September 2020 marks the anniversary of the 2500 years that have passed since this famous naval battle which took place in late September 480 B.C. The suggested model describes very well the most effective strategic behavior between two participants during a battle (or in a war). Moreover, we compare the results of the Dynamical Systems analysis to Game Theory, considering this conflict as a “war game”.展开更多
Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a net...Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a network attack-defence game model by using signalling game, which is modelled in the way of dynamic and incomplete information. We improve the traditional attack-defence strategies quantization method to meet the needs of the network signalling game model. Moreover, we give the calculation of the game equilibrium and analyse the optimal defence scheme. Finally, we analyse and verify effectiveness of the model and method through a simulation experiment.展开更多
With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due ...With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.展开更多
With the rapid improvement of urbanization and industrialization in countries around the world,how to effectively solve the rapid demise of traditional villages is a social dilemma faced by all countries,which is why ...With the rapid improvement of urbanization and industrialization in countries around the world,how to effectively solve the rapid demise of traditional villages is a social dilemma faced by all countries,which is why a series of relevant protection regulations have been promulgated in different historical periods.However,the formulation of relevant policies is still not scientific,universal,and long-term.In this study,we constructed an evolutionary game model of local governments and residents based on the evolutionary game theory(EGT),which is used to explore the evolutionary stability strategy(ESS)and stability conditions of stakeholders under the premise of mutual influence and restriction.Besides,the study also included the analysis about the impacts of different influence factors on the evolution tendency of the game model.At the same time,numerical simulation examples were used to verify the theoretical results and three crucial conclusions have been drawn.Firstly,the strategic evolution of stakeholders is a dynamic process of continuous adjustment and optimization,and its results and speed show consistent interdependence.Secondly,the decision-making of stakeholders mainly depends on the basic cost,and the high cost of investment is not conducive to the protection of traditional villages.Thirdly,the dynamic evolutionary mechanism composed of different influence factors will have an impact on the direction and speed of decision-making of stakeholders,which provides the basis for them to effectively restrict the decision-making of each other.This study eliminates the weaknesses of existing research approaches and provides scientific and novel ideas for the protection of traditional villages,which can contribute to the formulation and improvement of the relevant laws and regulations.展开更多
As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and...As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,展开更多
The exact evolutionary history of any set of biological taxa is unknown, and all phylogenetic reconstructions are approximations. The problem becomes harder when one must consider a mix of vertical and lateral phyloge...The exact evolutionary history of any set of biological taxa is unknown, and all phylogenetic reconstructions are approximations. The problem becomes harder when one must consider a mix of vertical and lateral phylogenetic signals. In this paper we propose a game theoretic approach to constructing biological networks. The key hypothesis is that evolution is driven by distinct mechanisms that seek to maximize two competing objectives, taxonomic conservation and diversity. One branch of the mathematical theory of games is brought to bear. It translates this evolutionary game hypothesis into a mathematical model in two-player zero-sum games, with the zero-sum assumption conforming to one of the fundamental constraints in nature in mass and energy conservation. We demonstrate why and how a mechanistic and localized adaptation to seek out greater information for conservation and diversity may always lead to a global Nash equilibrium in phylogenetic affinity. Our game theoretic method, referred to as bioinformatic game theory, is used to construct network clusters. As an example, we applied this method to clustering of a multidomain protein family. The protein clusters identified were consistent with known protein subfamilies, indicating that this game-theoretic approach provides a new framework in biological sequence analysis, especially in studying gene-genome and domain-protein relationships.展开更多
The introduction of new technologies has increased communication network coverage and the number of associating nodes in dynamic communication networks(DCN).As the network has the characteristics like decentralized an...The introduction of new technologies has increased communication network coverage and the number of associating nodes in dynamic communication networks(DCN).As the network has the characteristics like decentralized and dynamic,few nodes in the network may not associate with other nodes.These uncooperative nodes also known as selfish nodes corrupt the performance of the cooperative nodes.Namely,the nodes cause congestion,high delay,security concerns,and resource depletion.This study presents an effective selfish node detection method to address these problems.The Price of Anarchy(PoA)and the Price of Stability(PoS)in Game Theory with the Presence of Nash Equilibrium(NE)are discussed for the Selfish Node Detection.This is a novel experiment to detect selfish nodes in a network using PoA.Moreover,the least response dynamic-based Capacitated Selfish Resource Allocation(CSRA)game is introduced to improve resource usage among the nodes.The suggested strategy is simulated using the Solar Winds simulator,and the simulation results show that,when compared to earlier methods,the new scheme offers promising performance in terms of delivery rate,delay,and throughput.展开更多
In game theoretic context, it is assumed that the decision maker has the extraordinary skills of reasoning and calculation. This assumption is called "perfect rationality". A player with perfect rationality can solv...In game theoretic context, it is assumed that the decision maker has the extraordinary skills of reasoning and calculation. This assumption is called "perfect rationality". A player with perfect rationality can solve complex problems without making mistakes. However, recently, many studies have restricted this rationality or the structure of game. These restrictions are called "bounded rationality." The authors also focus on bounded rationality, but with learning dynamics and complex networks. A complex network covers a wide area. Currently, a wide range of studies have not only investigated network formation and the characteristics of a formed network, but also analyzed situations where a network is already provided. In addition, in an analysis using game theory, a prisoners' dilemma type game was used to investigate how a change in the network structure would affect the players' relationships Therefore, our model employs decision makers with learning dynamics and describes the interaction of decision makers as a network. The purpose of this study is to examine the behavior of the decision maker with learning dynamics and the formation of networks by the interaction of decision makers through an agent-based simulation.展开更多
Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors...Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors, considering exploration cost, target detection value, exploration ability and other factors. Then, aiming at the unfavorable environment, e.g., obstacles and enemy interference, the authors design a method to maintain the connectivity of sensor network, under the conditions of effective detection of the targets. Simulation result shows that the proposed deployment strategy can achieve the dynamic optimization deployment under complex conditions.展开更多
With the increasingly severe global warming, investments in clean technology, reforestation and political action have been studied to reduce CO2 emission. In this study, a nonlinear stochastic model is proposed to des...With the increasingly severe global warming, investments in clean technology, reforestation and political action have been studied to reduce CO2 emission. In this study, a nonlinear stochastic model is proposed to describe the dynamics of CO2 emission with control inputs: clean technology, reforestation and carbon tax, under stochastic uncertainties. For the efficient resources management, a robust tracking control is designed to force resources tracking a desired reference output. The worst-case effect of stochastic parametric fluctuations, external disturbances and uncertain initial conditions on the tracking performance is considered and minimized from the dynamic game theory perspective. This stochastic game problem, in which one player (stochastic uncertainty) maximizes the tracking error and another player (control input) minimizes the tracking error, could be equivalent to a robust minimax tracking problem. To avoid solving the HJI, a fuzzy model is proposed to approximate the nonlinear CO2 emission model. Then the nonlinear stochastic game problem could be easily solved by fuzzy stochastic game approach via LMI technique.展开更多
Negotiation and bargaining are the common means of solving economic and political prob-lems.In these problems,players often form coalitions for activities.In the environment with externalities,the worth of a coalition...Negotiation and bargaining are the common means of solving economic and political prob-lems.In these problems,players often form coalitions for activities.In the environment with externalities,the worth of a coalition depends not only on itself,but also on the coalition structure of other players.This paper studies dynamic bargaining games with externalities and analyzes the effect of externality on the payoffs of players.Based on the Rubinstein's two-person alternating-offer bargaining game,the authors study a two-person dynamic game with externalities and extend it to the case of n players.The research shows that externality affects the results of this bargaining game,and coalition structures affect the payoffs of players.Players in this bargaining game can always form grand coali- tion if an allocation is effective,but some coalition structures may not be formed under some certain conditions.展开更多
文摘In this paper, we present an innovative non–linear, discrete, dynamical system trying to model the historic battle of Salamis between Greeks and Persians. September 2020 marks the anniversary of the 2500 years that have passed since this famous naval battle which took place in late September 480 B.C. The suggested model describes very well the most effective strategic behavior between two participants during a battle (or in a war). Moreover, we compare the results of the Dynamical Systems analysis to Game Theory, considering this conflict as a “war game”.
基金supported by the National Natural Science Foundation of China under Grant No. 61303074 and No. 61309013the Henan Province Science and Technology Project Funds under Grant No. 12210231002
文摘Nowadays, security defence of network uses the game theory, which mostly applies complete information game model or even the static game model. To get closer to the actual network and defend actively, we propose a network attack-defence game model by using signalling game, which is modelled in the way of dynamic and incomplete information. We improve the traditional attack-defence strategies quantization method to meet the needs of the network signalling game model. Moreover, we give the calculation of the game equilibrium and analyse the optimal defence scheme. Finally, we analyse and verify effectiveness of the model and method through a simulation experiment.
基金supported in part by the National Natural Science Foundation of China (61771120)the Fundamental Research Funds for the Central Universities (N171602002)
文摘With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.
基金funded by the Southwest Minzu University 2021 Graduate Innovative Research Master Key Project(320-022142043).
文摘With the rapid improvement of urbanization and industrialization in countries around the world,how to effectively solve the rapid demise of traditional villages is a social dilemma faced by all countries,which is why a series of relevant protection regulations have been promulgated in different historical periods.However,the formulation of relevant policies is still not scientific,universal,and long-term.In this study,we constructed an evolutionary game model of local governments and residents based on the evolutionary game theory(EGT),which is used to explore the evolutionary stability strategy(ESS)and stability conditions of stakeholders under the premise of mutual influence and restriction.Besides,the study also included the analysis about the impacts of different influence factors on the evolution tendency of the game model.At the same time,numerical simulation examples were used to verify the theoretical results and three crucial conclusions have been drawn.Firstly,the strategic evolution of stakeholders is a dynamic process of continuous adjustment and optimization,and its results and speed show consistent interdependence.Secondly,the decision-making of stakeholders mainly depends on the basic cost,and the high cost of investment is not conducive to the protection of traditional villages.Thirdly,the dynamic evolutionary mechanism composed of different influence factors will have an impact on the direction and speed of decision-making of stakeholders,which provides the basis for them to effectively restrict the decision-making of each other.This study eliminates the weaknesses of existing research approaches and provides scientific and novel ideas for the protection of traditional villages,which can contribute to the formulation and improvement of the relevant laws and regulations.
基金College Doctor Foundation (20060699026)Aviation Basic Scientific Foundation (05D53021).
文摘As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,
文摘The exact evolutionary history of any set of biological taxa is unknown, and all phylogenetic reconstructions are approximations. The problem becomes harder when one must consider a mix of vertical and lateral phylogenetic signals. In this paper we propose a game theoretic approach to constructing biological networks. The key hypothesis is that evolution is driven by distinct mechanisms that seek to maximize two competing objectives, taxonomic conservation and diversity. One branch of the mathematical theory of games is brought to bear. It translates this evolutionary game hypothesis into a mathematical model in two-player zero-sum games, with the zero-sum assumption conforming to one of the fundamental constraints in nature in mass and energy conservation. We demonstrate why and how a mechanistic and localized adaptation to seek out greater information for conservation and diversity may always lead to a global Nash equilibrium in phylogenetic affinity. Our game theoretic method, referred to as bioinformatic game theory, is used to construct network clusters. As an example, we applied this method to clustering of a multidomain protein family. The protein clusters identified were consistent with known protein subfamilies, indicating that this game-theoretic approach provides a new framework in biological sequence analysis, especially in studying gene-genome and domain-protein relationships.
文摘The introduction of new technologies has increased communication network coverage and the number of associating nodes in dynamic communication networks(DCN).As the network has the characteristics like decentralized and dynamic,few nodes in the network may not associate with other nodes.These uncooperative nodes also known as selfish nodes corrupt the performance of the cooperative nodes.Namely,the nodes cause congestion,high delay,security concerns,and resource depletion.This study presents an effective selfish node detection method to address these problems.The Price of Anarchy(PoA)and the Price of Stability(PoS)in Game Theory with the Presence of Nash Equilibrium(NE)are discussed for the Selfish Node Detection.This is a novel experiment to detect selfish nodes in a network using PoA.Moreover,the least response dynamic-based Capacitated Selfish Resource Allocation(CSRA)game is introduced to improve resource usage among the nodes.The suggested strategy is simulated using the Solar Winds simulator,and the simulation results show that,when compared to earlier methods,the new scheme offers promising performance in terms of delivery rate,delay,and throughput.
文摘In game theoretic context, it is assumed that the decision maker has the extraordinary skills of reasoning and calculation. This assumption is called "perfect rationality". A player with perfect rationality can solve complex problems without making mistakes. However, recently, many studies have restricted this rationality or the structure of game. These restrictions are called "bounded rationality." The authors also focus on bounded rationality, but with learning dynamics and complex networks. A complex network covers a wide area. Currently, a wide range of studies have not only investigated network formation and the characteristics of a formed network, but also analyzed situations where a network is already provided. In addition, in an analysis using game theory, a prisoners' dilemma type game was used to investigate how a change in the network structure would affect the players' relationships Therefore, our model employs decision makers with learning dynamics and describes the interaction of decision makers as a network. The purpose of this study is to examine the behavior of the decision maker with learning dynamics and the formation of networks by the interaction of decision makers through an agent-based simulation.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61321002the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208+1 种基金the Changjiang Scholars Programthe Beijing Outstanding Ph.D. Program Mentor under Grant No.20131000704
文摘Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors, considering exploration cost, target detection value, exploration ability and other factors. Then, aiming at the unfavorable environment, e.g., obstacles and enemy interference, the authors design a method to maintain the connectivity of sensor network, under the conditions of effective detection of the targets. Simulation result shows that the proposed deployment strategy can achieve the dynamic optimization deployment under complex conditions.
文摘With the increasingly severe global warming, investments in clean technology, reforestation and political action have been studied to reduce CO2 emission. In this study, a nonlinear stochastic model is proposed to describe the dynamics of CO2 emission with control inputs: clean technology, reforestation and carbon tax, under stochastic uncertainties. For the efficient resources management, a robust tracking control is designed to force resources tracking a desired reference output. The worst-case effect of stochastic parametric fluctuations, external disturbances and uncertain initial conditions on the tracking performance is considered and minimized from the dynamic game theory perspective. This stochastic game problem, in which one player (stochastic uncertainty) maximizes the tracking error and another player (control input) minimizes the tracking error, could be equivalent to a robust minimax tracking problem. To avoid solving the HJI, a fuzzy model is proposed to approximate the nonlinear CO2 emission model. Then the nonlinear stochastic game problem could be easily solved by fuzzy stochastic game approach via LMI technique.
基金supported by the National Natural Science Foundation of China under Grant No.71231007
文摘Negotiation and bargaining are the common means of solving economic and political prob-lems.In these problems,players often form coalitions for activities.In the environment with externalities,the worth of a coalition depends not only on itself,but also on the coalition structure of other players.This paper studies dynamic bargaining games with externalities and analyzes the effect of externality on the payoffs of players.Based on the Rubinstein's two-person alternating-offer bargaining game,the authors study a two-person dynamic game with externalities and extend it to the case of n players.The research shows that externality affects the results of this bargaining game,and coalition structures affect the payoffs of players.Players in this bargaining game can always form grand coali- tion if an allocation is effective,but some coalition structures may not be formed under some certain conditions.