期刊文献+
共找到810篇文章
< 1 2 41 >
每页显示 20 50 100
Damage and fracture behavior and spatio-temporal evolution of acoustic emission of sandstone before and after laser radiation
1
作者 GAO Ming-zhong LIU Jun-jun +6 位作者 LIChun-xiang YANG Ben-gao LI Fei ZHOU Xue-min YANG Lei YANG Zun-dong XIE Jing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3264-3280,共17页
Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su... Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency. 展开更多
关键词 laser rock breaking efficient drilling acoustic emission mechanical damage strength reduction
下载PDF
Experimental investigation for temperature and emissivity by flame emission spectrum in a cavity of rocket based combined cycle combustor chamber
2
作者 Weiguang Cai Shu Zheng +4 位作者 Yan Wang Bing Liu Shaohua Zhu Li Zhao Qiang Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期114-122,共9页
Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus... Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6. 展开更多
关键词 Rocket-based combined-cycle Supersonic combustion Flame temperature measurement emissIVITY laser induced plasma combustion enhancement
下载PDF
Diagnostics of laser-induced plasma on carbon-based polymer material using atomic and molecular emission spectra
3
作者 Jelena PETROVIC Dragan RANKOVIC +5 位作者 Miroslav KUZMANOVIC Jelena SAVOVIC Vasili KIRIS Alena NEVAR Mikhail NEDELKO Nikolai TARASENKO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期175-183,共9页
Time-integrated optical emission analysis of laser-induced plasma on Teflon is presented.Plasma was induced under atmospheric pressure air using transversely excited atmospheric CO_(2) laser pulses.Teflon is a C-based... Time-integrated optical emission analysis of laser-induced plasma on Teflon is presented.Plasma was induced under atmospheric pressure air using transversely excited atmospheric CO_(2) laser pulses.Teflon is a C-based polymer that is,among other things,interesting as a substrate for laser-induced breakdown spectroscopy analysis of liquid samples.This study aimed to determine the optimal experimental conditions for obtaining neutral and ionized C spectral lines and C2 and CN molecular band emission suitable for spectrochemical purposes.Evaluation of plasma parameters was done using several spectroscopic techniques.Stark profiles of appropriate C ionic lines were used to determine electron number density.The ratio of the integral intensity of ionic-to-atomic C spectral lines was used to determine the ionization temperature.A spectral emission of C2 Swan and CN violet bands system was used to determine the temperature of the colder,peripheral parts of plasma.We critically analyzed the use of molecular emission bands as a tool for plasma diagnostics and suggested methods for possible improvements. 展开更多
关键词 spectroscopy of laser-induced plasma laser-induced breakdown spectroscopy transversely excited atmospheric CO_(2)laser plasma diagnostics atomic and molecular emission spectra TEFLON
下载PDF
A remote sensing system of vehicle emissions based on tunable diode laser technology 被引量:3
4
作者 ZENG Jun GUO Hua-fang HU Yue-ming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期154-157,共4页
As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A fie... As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented. 展开更多
关键词 remote sensing tunable diode laser vehicle emission detectable rate
下载PDF
Stimulated photoluminescence emission and trap states in Si/SiO_2 interface formed by irradiation of laser 被引量:2
5
作者 黄伟其 许丽 +5 位作者 王海旭 金峰 吴克跃 刘世荣 秦朝建 秦水介 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1817-1820,共4页
Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emi... Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emission, which can be demonstrated by its threshold behaviour and linear transition of emission intensity as a function of pump power. The oxide structure is formed by laser irradiation on silicon and its annealing treatment. A model for explaining the stimulated emission is proposed, in which the trap states of the interface between an oxide of silicon and porous nanocrystal play an important role. 展开更多
关键词 interface states stimulated emission oxide structure of silicon laser irradiation
下载PDF
Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach 被引量:2
6
作者 Yong WANG Cong LI +2 位作者 Jielin SHI Xingwei WU Hongbin DING 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第11期23-30,共8页
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and elec... As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma. 展开更多
关键词 laser Thomson scattering optical emission spectroscopy cascaded arc plasma electron density electron temperature electron excitation temperature
下载PDF
Spectral and ion emission features of laser-produced Sn and SnO2 plasmas 被引量:1
7
作者 兰慧 王新兵 左都罗 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期249-255,共7页
We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are ir... We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. 展开更多
关键词 laser-produced plasma Nd:YAG laser ion emission extreme ultraviolet emission
下载PDF
Highly specific characterization and discrimination of monosodium urate crystals in gouty arthritis based on aggregation-induced emission luminogens
8
作者 Wenjuan Wang Guiquan Zhang +5 位作者 Ziyi Chen Hanlin Xu Bohan Zhang Rong Hu Anjun Qin Yinghui Hua 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第6期704-717,共14页
Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation... Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation-induced emission luminogens(AIEgens)can be used for highly specific imaging of MSU crystals to assist in the diagnosis of gout.First,we developed a series of luminogens(i.e.,tetraphenyl ethylene(TPE)-NH_(2),TPE-2NH_(2),TPE-4NH_(2),TPE-COOH,TPE-2COOH,TPE-4COOH,and TPE-Ketoalkyne),each of which was then evenly mixed with MSU crystals.Next,optimal fluorescence imaging of each of the luminogens was characterized by a confocal laser scanning microscope(CLSM).This approach was used for imaging standard samples of MSU,hydroxyapatite(HAP)crystals,and mixed samples with 1:1 mass ratio of MSU/HAP.We also imaged samples from mouse models of acute gouty arthritis,HAP deposition disease,and comorbidities of interest.Subsequently,CLSM imaging results were compared with those of compensated polarized light microscopy,and we assessed the biosafety of TPE-Ketoalkyne in the RAW264.7 cell line.Finally,CLSM time series and three-dimensional imaging were performed on MSU crystal samples from human gouty synovial fluid and tophi.As a promising candidate for MSU crystal labeling,TPE-Ketoalkyne was found to detect MSU crystals accurately and rapidly in standard samples,animal samples,and human samples,and could precisely distinguish gout from HAP deposition disease.This work demonstrates that TPE-Ketoalkyne is suitable for highly specific and timely imaging of MSU crystals in gouty arthritis and may facilitate future research on MSU crystal-related diseases. 展开更多
关键词 GOUT Monosodium urate HYDROXYAPATITE TPE-Ketoalkyne Aggregation-induced emission Confocal laser scanning microscope imaging
下载PDF
Time-Resolved Optical Emission Spectroscopy Diagnosis of CO_2 Laser-Produced SnO_2 Plasma 被引量:1
9
作者 兰慧 王新兵 左都罗 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第9期902-906,共5页
The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximmn of 80 ns. The temporal behavior of the s... The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximmn of 80 ns. The temporal behavior of the specific emission lines from the SnO2 plasma was characterized. The intensities of Sn I and Sn Ⅱ lines first increased, and then decreased with the delay time. The results also showed a faster decay of Sn I atoms than that of Sn II ionic species. The temporal evolutions of the SnO2 plasma parameters (electron temperature and density) were deduced. The measured temperature and density of SnO2 plasma are 4.38 eV to 0.5 eV and 11.38×1017 cm 3 to 1.1×1017^ cm-3, for delay times between 0.1 μs and 2.2 #s. We also investigated the effect of the laser pulse energy on Sn02 plasma. 展开更多
关键词 optical emission spectroscopy laser produced plasma C02 laser electrontemperature electron density
下载PDF
Design and calibration of an elliptical crystal spectrometer for the diagnosis of proton-induced x-ray emission(PIXE)
10
作者 方言律 李东彧 +9 位作者 程浩 高原 申泽清 杨童 李昱泽 夏亚东 晏炀 颜莎 林晨 颜学庆 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期220-225,共6页
Laser-driven proton-induced x-ray emission(laser-PIXE) is a nuclear analysis method based on the compact laser ion accelerator. Due to the transient process of ion acceleration, the laser-PIXE signals are usually spur... Laser-driven proton-induced x-ray emission(laser-PIXE) is a nuclear analysis method based on the compact laser ion accelerator. Due to the transient process of ion acceleration, the laser-PIXE signals are usually spurted within nanoseconds and accompanied by strong electromagnetic pulses(EMP), so traditional multi-channel detectors are no longer applicable.In this work, we designed a reflective elliptical crystal spectrometer for the diagnosis of laser-PIXE. The device can detect the energy range of 1 keV–11 ke V with a high resolution. A calibration experiment was completed on the electrostatic accelerator of Peking University using samples of Al, Ti, Cu, and ceramic artifacts. The detection efficiency of the elliptical crystal spectrometer was obtained in the order of 10-9. 展开更多
关键词 elliptical crystal spectrometer proton-induced x-ray emission applications of laser ion accelera-tion
下载PDF
Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy 被引量:2
11
作者 Yu ZHANG Jianjun WU +2 位作者 Yang OU Daixian ZHANG Jian LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第4期83-89,共7页
In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion,a novel laser ablation pulsed plasma thruster is proposed,which separated the laser ablation and electromagn... In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion,a novel laser ablation pulsed plasma thruster is proposed,which separated the laser ablation and electromagnetic acceleration.Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster.The spectral lines at different times,positions and discharge intensities are experimentally recorded,and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines.With the discharge energy of 24 J,laser energy of 0.6 J and the use of aluminum propellant,the specific impulse and thrust efficiency reach 6808 s and 70.6%,respectively. 展开更多
关键词 laser ablation PULSED PLASMA THRUSTER optical emission SPECTROSCOPY PLASMA PROPULSION performance
下载PDF
Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation 被引量:1
12
作者 Qianliang Li Walter Perrie +2 位作者 Zhaoqing Li Stuart P Edwardson Geoff Dearden 《Opto-Electronic Advances》 SCIE EI 2022年第1期1-12,共12页
The optical nonlinearity in polycrystalline zinc selenide(ZnSe),excited with 775 nm,1 kHz femtosecond laser pulses was investigated via the nonlinear transmission with material thickness and the Z scan technique.The m... The optical nonlinearity in polycrystalline zinc selenide(ZnSe),excited with 775 nm,1 kHz femtosecond laser pulses was investigated via the nonlinear transmission with material thickness and the Z scan technique.The measured two photon absorption coefficientβwas intensity dependent,inferring that reverse saturated absorption(RSA)is also relevant dur-ing high intensity excitation in ZnSe.At low peak intensity I<5 GW cm^(-2),we findβ=3.5 cm GW^(-1) at 775 nm.The spec-tral properties of the broad blueish two-photon induced fluorescence(460 nm-500 nm)was studied,displaying self-ab-sorption near the band edge while the upper state lifetime was measured to be τ_(e)~3.3 ns.Stimulated emission was ob-served when pumping a 0.5 mm thick polycrystalline ZnSe sample within an optical cavity,confirmed by significant line narrowing fromΔλ=11 nm(cavity blocked)toΔλ=2.8 nm at peak wavelength λ_(p)=475 nm while the upper state life-time also decreased.These results suggest that with more optimum pumping conditions and crystal cooling,polycrystal-line ZnSe might reach lasing threshold via two-photon pumping atλ=775 nm. 展开更多
关键词 ZNSE femtosecond laser nonlinear absorption stimulated emission FLUORESCENCE
下载PDF
Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air
13
作者 Ying WANG Anmin CHEN +5 位作者 Qiuyun WANG Dan ZHANG Laizhi SUI Suyu LI Yuanfei JIANG Mingxing JIN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期98-107,共10页
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire l... In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only. 展开更多
关键词 laser-INDUCED BREAKDOWN spectroscopy FEMTOSECOND laser double pulse emission ENHANCEMENT GLASS
下载PDF
Formation Mechanism and Emission Spectrum of AlO Radicals in Reaction of Laser-ablated Al Atom and Oxygen
14
作者 ZHANG Shu-dong LI Hai-Yang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第3期320-323,共4页
The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B ... The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B 2Σ +-X 2Σ + transition of AlO radicals, the observed maximum vibrational quantum number was ν ′=6. The rotational and vibrational temperatures of B state were estimated at 3000 and 7500 K by spectrally simulating the rovibronic population distribution. There is a strong evidence that the production of excited Al( 2 S ) atoms is essential to the formation of excited AlO radicals. 展开更多
关键词 laser ablation emission spectrum ALO Chemiluminescence reaction
下载PDF
A Perspective of Laser Sampling for Inductively Coupled Plasma-Atomic Emission Spectro metry for Rock and Mineral Analysis
15
作者 Lin Shoulin Peng ZhaofengChina University of Geosciences , Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1992年第1期120-128,共9页
The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser samp... The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser sampling of liquid samples for inductively coupled plasma -atomic emission spectrometry has been proposed , and its analytical performance investigated.Experimental results showed that,as a method of sample introduction , laser vaporization of liquid samples enjoyed certain advantages , e.g.,much higher sensitivity, much lower detection limit and reduced sample volume , over solution nebulization . A perspective of the application of laser sampling-inductively coupled plasma - actomic emission spectrometry for rock and mineral analysis is estimated as well. 展开更多
关键词 continuous laser sampling complete laser vaporization of samples inductively coupled plasma-atomic emission spectrometry solid sample liquid sample rock and mineral analysis .
下载PDF
Spectral Efficiency of Extreme Ultraviolet Emission from CO_2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph
16
作者 吴涛 王新兵 王少义 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第5期435-438,共4页
A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 ... A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 nm for lithography. Spectral efficiency of the EUV emission around 13.5 nm from plate, cavity, and thin foil tin targets was studied. By translating the focusing lens along the laser axis, the dependence of EUV spectra on the amount of defocus was investigated. The results showed that the spectral efficiency was higher for the cavity target in comparison to the plate or foil target, while it decreased with an increase in the defocus distance. The source's spectra and the EUV emission intensity normalized to the incident pulse energy at 45 from the target normal were characterized for the in-band (2% of bandwidth) region as a function of laser energy spanning from 46 mJ to 600 mJ for the pure tin plate target. The energy normalized EUV emission was found to increase with the increasing incident pulse energy. It reached the optimum value for the laser energy of around 343 mJ, after which it dropped rapidly. 展开更多
关键词 laser-produced plasma extreme ultraviolet (EUV) emission CO2 laser spec-tral efficiency EUV lithography
下载PDF
Relation between welding parameter and acoustic emission information during laser deep penetration welding
17
作者 陈彦宾 张忠典 王欣 《China Welding》 EI CAS 2002年第1期64-66,共3页
In laser non penetration deep penetration welding process, welding material will vaporize, metal vapor and ambient gas will produce a higher degree ionization, which forms plasma of high concentration. In the case of... In laser non penetration deep penetration welding process, welding material will vaporize, metal vapor and ambient gas will produce a higher degree ionization, which forms plasma of high concentration. In the case of forming a small hole, plasma will eject from the hole, and form acoustic emission (AE) signals. Because AE information has many advantages such as non contact measuring, fast response, and high ratio of signal to noise, it can be used as a monitor variable for in process control. By studying AE information, information of welding pool and small hole can be obtained. According to characteristic of AE information, this paper reveals the correlation between welding parameters and AE signals, and provides a good base for further quality control. 展开更多
关键词 laser deep penetration welding acoustic emission welding parameter
下载PDF
Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas 被引量:1
18
作者 M.L.SHAH A.K.PULHANI +1 位作者 B.M.SURI G.P.GUPTA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第6期546-551,共6页
Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph ... Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns. 展开更多
关键词 laser-induced plasma STEEL emission spectroscopy plasma temperature and electron number density
下载PDF
Effect of Cumulative Nanosecond Laser Pulses on the Plasma Emission Intensity and Surface Morphology of Pt-and Ag-Ion Deposited Silicon
19
作者 Khurram SIRAJ Muhammad Zakria BUTT +3 位作者 Muhammad KHALEEQ-UR-RAHMAN Muhammad Shahid RAFIQUE Saima RAFIQUE FAKHAR-UN-NISA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第4期333-337,共5页
In this work, the laser induced plasma plume characteristics and surface morphology of Pt- and Ag-ion deposited silicon were studied. The deposited silicon was exposed to cumulative laser pulses. The plasma plume imag... In this work, the laser induced plasma plume characteristics and surface morphology of Pt- and Ag-ion deposited silicon were studied. The deposited silicon was exposed to cumulative laser pulses. The plasma plume images produced by each laser shot were captured through a computer controlled image capturing system and analyzed with image-J software. The integrated optical emission intensity of both samples showed an increasing trend with increasing pulses. Agion deposited silicon showed higher optical emission intensity as compared to Pt-ion deposited silicon, suggesting that more damage occurred to the silicon by Ag ions, which was confirmed by SRIM/TRIM simulations. The surface morphologies of both samples were examined by optical microscope showing thermal, exfoliational and hydrodynamical sputtering processes along with the re-deposition of the material, debris and heat affected zones' formation. The crater of Ption deposited silicon was deeper but had less lateral damage than Agion deposited silicon. The novel results clearly indicated that the ion deposited silicon surface produced incubation centers, which led to more absorption of incident light resulting into a higher emission intensity from the plasma plume and deeper crater formation as compared to pure silicon. The approach can be effectively utilized in the laser induced breakdown spectroscopy technique, which endures poor limits of detection. 展开更多
关键词 ions deposited silicon laser irradiation plasma plume emission intensity crater formation
下载PDF
Characteristics of Laser Produced Plasmas Obtained by Fast ICCD Photography, Schlieren Photography and Optical Emission Spectroscopy 被引量:2
20
作者 WEI Wenfu WU Jian LI Xingwen JIA Shenli QIU Aici 《高电压技术》 EI CAS CSCD 北大核心 2013年第9期2173-2179,共7页
Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this... Pulsed laser produced plasmas(LPP)are important for industrial applications and fundamental researches,and their complex,multi-physical and cross-chemical processes need to be investigated more comprehensively.In this work,images of the luminous plasma,the spatial density distribution,and the plasma parameters are experimentally investigated by using fast ICCD photography,schlieren photography,and optical emission spectroscopy.Plasmas are produced by a 1 064 nm,15 ns Nd:YAG laser.Free expanding and splitting phenomena are observed in vacuum(at the pressure of about 1×10 3Pa)and air(at the pressure of 20 Pa)using fast photography,respectively.Meanwhile,shock waves formed in the atmospheric laser produced plasma are visualized by schlieren photography.The formation of shock waves is interpreted with the Sedov-Taylor theory,and an averaged expansion velocity about 375 m/s of the shock waves is estimated during 200~1 000 ns.Atmospheric air is found to have significant confinement effects on the plasma expansions compared to that in vacuum or low pressure ambient.Based on the optical emission spectroscopy,after 1 000 ns,at 0.6 mm above the target,the plasma temperature is about 7 800 K and the electron number density is approximately 0.64×1016cm-3. 展开更多
关键词 等离子体密度 发射光谱仪 纹影摄影 激光产生 ICCD 生产 特性 等离子体参数
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部