期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Probabilistic Assessment of Reinforcing Steel Depassivation in Concrete under Aggressive Chloride Environments Based on Natural Exposure Data 被引量:3
1
作者 张小刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第1期126-131,共6页
The probability distributions of the critical threshold chloride concentration Ccr, the chloride diffusion coefficient D, and the surface chloride concentration Cs are determined based on the collected natural exposur... The probability distributions of the critical threshold chloride concentration Ccr, the chloride diffusion coefficient D, and the surface chloride concentration Cs are determined based on the collected natural exposure data, and the probability estimation of reinforcement depassivation in concrete is presented using Monte-Carlo simulation. From sensitivity analysis of mean value for ccr, cs, and D on the depassivation probability of reinforcement, it is found that ccr, cs, and D respectively has the greatest, smaller, and the lowest effect on the probability of depassivation. Finally the effect of stress state of concrete on the reinforcement depassivation probability is analyzed. It is found that the influence of stress state becomes apparent as exposure time increases. 展开更多
关键词 probability of reinforcement depassivation natural exposure data stress state chloride diffusion coefficient critical threshold chloride concentration surface chloride concentration
下载PDF
Soil microbial activity and community structure as affected by exposure to chloride and chloride-sulfate salts 被引量:2
2
作者 ZHANG Qianqian Steven A WAKELIN +1 位作者 LIANG Yongchao CHU Guixin 《Journal of Arid Land》 SCIE CSCD 2018年第5期737-749,共13页
Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0... Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–. 展开更多
关键词 soil biological activity microbial diversit3T chloride salt mixed salt threshold concentration
下载PDF
Safety Evaluation of Vegetables Growing in Soils Contaminated by Different Levels of Cadmium(Cd) 被引量:2
3
作者 MI Bao-bin WANG Duan-hua +5 位作者 ZHANG Zhu-qing DAI Xiong-ze LIU Feng LIANG Cheng-liang XIE Ling-ling ZHOU Huo-qiang 《Agricultural Science & Technology》 CAS 2019年第1期15-21,共7页
The tested soils containing different Cd levels were obtained by mixing the normal cultivated soils with the Cd-contaminated soils taken from the paddies near a mine. Five major categories of vegetables, i.e. cucumber... The tested soils containing different Cd levels were obtained by mixing the normal cultivated soils with the Cd-contaminated soils taken from the paddies near a mine. Five major categories of vegetables, i.e. cucumber, cowpea, Bok choy, radish and lettuce, widely planted in the spring and autumn in Hunan Province, were selected for pool-culture experiments. Results showed that the Cd accumulations varied greatly according to the category of vegetables. The Cd accumulations in cucumber and cowpea growing in soils with high Cd levels (1.5 mg/kg) were within the threshold limits of the national standards, meaning that these two categories are safe to grow in Cd-contaminated soils. For either the cucumber or the cowpea category, there were no significant differences in the Cd accumulations of different genotypes. Most of the tested Bok choy and radish cultivars could grow safely in soils whose Cd levels were below 1.0 mg/kg. In comparison, the Cd accumulations in some cultivars tended to increase sharply as the Cd level in the soil went beyond 1.0 mg/kg. Significant variations were also observed in the Cd accumulations of different genotypes with mounting Cd levels in the soil. Besides, there were no positive correlations between Cd accumulations in plants and Cd levels in soils, indicating large fluctuations and poor ecological stability of Bok choy and radish. Therefore, the planting of Bok choy and radish should be strictly evaluated and controlled in Cdcontaminated regions. The Cd contents of most celtuce cultivars growing in mildlycontaminated soils had already exceeded the threshold limit. Therefore, it is not safe for celtuce to grow in Cd-contaminated environments. 展开更多
关键词 CD VEGETABLE Difference in Cd accumulation Concentration threshold
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部