Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,si...Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.展开更多
BACKGROUND This case report highlights a rare instance of concurrent keloid and epidermal cyst development at an ear cartilage harvest site following rhinoplasty in a 25-year-old woman.Both conditions,which typically ...BACKGROUND This case report highlights a rare instance of concurrent keloid and epidermal cyst development at an ear cartilage harvest site following rhinoplasty in a 25-year-old woman.Both conditions,which typically stem from skin trauma,seldom occur together,demonstrating the exceptional characteristics of this case.CASE SUMMARY The patient underwent successful surgical removal of both the keloid and the epidermal cyst.Postoperative treatment included the use of silicone sheets,gel,and oral tranilast to reduce scarring.No recurrence was observed over a 6-mo follow-up period,indicating effective management of the condition.CONCLUSION The effective management of complex skin trauma cases underscores the need for individualized treatment strategies in plastic surgery.展开更多
Objective Endoscopic tympanoplasty includes various surgical methods,such as internal repair,interlayer repair,and external overlay.This technique requires autologous materials,allografts,and xenografts,which are used...Objective Endoscopic tympanoplasty includes various surgical methods,such as internal repair,interlayer repair,and external overlay.This technique requires autologous materials,allografts,and xenografts,which are used to repair tympanic membrane(TM)perforation.To obtain good results,appropriate surgical methods and repair materials should be selected.This study aims to assess the efficacy of repairing refractory TM perforations in the porcine small intestinal submucosa(SIS)during transcanal endoscopic type I tympanoplasty.Method A retrospective chart review was performed on patients who underwent TM perforation repair with porcine SIS and tragus cartilage between January 2022 and September 2022 at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine.Perforation size,tympanic status,pre-and postoperative symptoms,follow-up data,wound healing rates,and hearing improvement were analysed.Results Of the 115 patients included in the study,56 underwent interlayer repair with porcine SIS of the TM,and 59 patients underwent internal repair with tragus cartilage.No significant difference was found between the two groups at baseline in terms of age,sex,disease course,perforation side,tympanic status,underlying disease,or preoperative infection.The total postoperative effective rate of interlayer implantation with porcine SIS was 91.07%(51 patients),and that of internal implantation with tragus cartilage was 88.14%(52 patients).No significant difference was found in terms of the graft success rate between the two surgical methods(p=0.887).Postoperative pure tone auditory(PTA)and air-bone gap(ABG)density significantly increased in both groups compared with before surgery(p<0.05).However,the postoperative PTA and ABG density were not significantly different 3 months post-surgery between the two groups(p>0.05).Compared to those in the internal implantation group,the patients in the interlayer group had a shorter operation duration(51.36±6.76 min vs.59.71±7.45 min,t=6.298,p<0.001)and less blood loss(11.91±2.61 mL vs.15.27±2.57 mL,t=7.019,p<0.001).Conclusions Our study suggests that the porcine SIS,as well as the tragus cartilage,has a high success rate in repairing irreversible TM perforation.Endoscopic tympanoplasty via interlayer implantation with porcine SIS offers distinct advantages,including the absence of donor-site incision and scar formation,and ease of graft modification and manipulation.展开更多
BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate ...BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate magnetic resonance imaging(MRI)multisequence imaging for improving the diagnostic accuracy of adult elbow cartilage injury.METHODS A total of 60 patients diagnosed with elbow cartilage injury in our hospital from January 2020 to December 2021 were enrolled in this retrospective study.We analyzed the accuracy of conventional MRI sequences(T1-weighted imaging,T2-weighted imaging,proton density weighted imaging,and T2 star weighted image)and Three-Dimensional Coronary Imaging by Spiral Scanning(3D-CISS)in the diagnosis of elbow cartilage injury.Arthroscopy was used as the gold standard to evaluate the diagnostic effect of single and combination sequences in different injury degrees and the consistency with arthroscopy.RESULTS The diagnostic accuracy of 3D-CISS sequence was 89.34%±4.98%,the sensitivity was 90%,and the specificity was 88.33%,which showed the best performance among all sequences(P<0.05).The combined application of the whole sequence had the highest accuracy in all sequence combinations,the accuracy of mild injury was 91.30%,the accuracy of moderate injury was 96.15%,and the accuracy of severe injury was 93.33%(P<0.05).Compared with arthroscopy,the combination of all MRI sequences had the highest consistency of 91.67%,and the kappa value reached 0.890(P<0.001).CONCLUSION Combination of 3D-CISS and each sequence had significant advantages in improving MRI diagnostic accuracy of elbow cartilage injuries in adults.Multisequence MRI is recommended to ensure the best diagnosis and treatment.展开更多
BACKGROUND Endoscopic ear surgery(EES)provides a magnified,high-definition view of the otological surgical field.EES allows otologists to avoid surgical incisions and associated postoperative complications.It is an id...BACKGROUND Endoscopic ear surgery(EES)provides a magnified,high-definition view of the otological surgical field.EES allows otologists to avoid surgical incisions and associated postoperative complications.It is an ideal technique for the perfor-mance and teaching of tympanoplasty.AIM To examine the efficacy of total Endoscopic Push Through Tragal Cartilage Tympanoplasty(EPTTCT),at our institution over a 10-year period.METHODS A retrospective analysis of 168 cases of EPTTCT for closure of small to medium tympanic membrane perforations from 2013-2023 was conducted.Patient sex,age range(pediatric vs adult),etiology of injury,success rate,complications,and postoperative hearing status were collected.RESULTS Graft uptake results indicated success in 94%of patients,with less than a 2%complication rate.Postoperative pure tone audiometry demonstrated hearing status improvement in 69%of patients.CONCLUSION EPTTCT has been shown to be effective in tympanic membrane perforation closures with minimal complications.This study further demonstrates the efficacy and safety of these procedures in a single-center review.展开更多
The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading ...The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading to joint damage.Conventional drugs cannot effectively reach this inflammatory source within the dense cartilage.展开更多
Articular cartilage serves as a low-friction,load-bearing tissue without the support with blood vessels,lymphatics and nerves,making its repair a big challenge.Transforming growth factor-beta 3(TGF-β3),a vital member...Articular cartilage serves as a low-friction,load-bearing tissue without the support with blood vessels,lymphatics and nerves,making its repair a big challenge.Transforming growth factor-beta 3(TGF-β3),a vital member of the highly conserved TGF-βsuperfamily,plays a versatile role in cartilage physiology and pathology.TGF-β3 influences the whole life cycle of chondrocytes and mediates a series of cellular responses,including cell survival,proliferation,migration,and differentiation.Since TGF-β3 is involved in maintaining the balance between chondrogenic differentiation and chondrocyte hypertrophy,its regulatory role is especially important to cartilage development.Increased TGF-β3 plays a dual role:in healthy tissues,it can facilitate chondrocyte viability,but in osteoarthritic chondrocytes,it can accelerate the progression of disease.Recently,TGF-β3 has been recognized as a potential therapeutic target for osteoarthritis(OA)owing to its protective effect,which it confers by enhancing the recruitment of autologous mesenchymal stem cells(MSCs)to damaged cartilage.However,the biological mechanism of TGF-β3 action in cartilage development and OA is not well understood.In this review,we systematically summarize recent progress in the research on TGF-β3 in cartilage physiology and pathology,providing up-to-date strategies for cartilage repair and preventive treatment.展开更多
Fibroblast activation protein(Fap)is a serine protease that degrades denatured type I collagen,α2-antiplasmin and FGF21.Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor a...Fibroblast activation protein(Fap)is a serine protease that degrades denatured type I collagen,α2-antiplasmin and FGF21.Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin(Oln).Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis(RA).However,whether Fap plays a critical role in osteoarthritis(OA)remains poorly understood.Here,we found that Fap is significantly elevated in osteoarthritic synovium,while the genetic deletion or pharmacological inhibition of Fap significantly ameliorated posttraumatic OA in mice.Mechanistically,we found that Fap degrades denatured type II collagen(Col II)and Mmp13-cleaved native Col II.Intra-articular injection of r Fap significantly accelerated Col II degradation and OA progression.In contrast,Oln is expressed in the superficial layer of articular cartilage and is significantly downregulated in OA.Genetic deletion of Oln significantly exacerbated OA progression,which was partially rescued by Fap deletion or inhibition.Intra-articular injection of r Oln significantly ameliorated OA progression.Taken together,these findings identify Fap as a critical pathogenic factor in OA that could be targeted by both synthetic and endogenous inhibitors to ameliorate articular cartilage degradation.展开更多
The anterior disc displacement(ADD)leads to temporomandibular joint osteoarthritis(TMJOA)and mandibular growth retardation in adolescents.To investigate the potential functional role of fibrocartilage stem cells(FCSCs...The anterior disc displacement(ADD)leads to temporomandibular joint osteoarthritis(TMJOA)and mandibular growth retardation in adolescents.To investigate the potential functional role of fibrocartilage stem cells(FCSCs)during the process,a surgical ADDTMJOA mouse model was established.From 1 week after model generation,ADD mice exhibited aggravated mandibular growth retardation with osteoarthritis(OA)-like joint cartilage degeneration,manifesting with impaired chondrogenic differentiation and loss of subchondral bone homeostasis.Lineage tracing using Gli1^(-)CreER^(+);Tm^(fl/-)mice and Sox9-CreER^(+);Tm^(fl/-)mice showed that ADD interfered with the chondrogenic capacity of Gli1+FCSCs as well as osteogenic differentiation of Sox9+lineage,mainly in the middle zone of TMJ cartilage.Then,a surgically induced disc reposition(DR)mouse model was generated.The inhibited FCSCs capacity was significantly alleviated by DR treatment in ADD mice.And both the ADD mice and adolescent ADD patients had significantly relieved OA phenotype and improved condylar growth after DR treatment.In conclusion,ADD-TMJOA leads to impaired chondrogenic progenitor capacity and osteogenesis differentiation of FCSCs lineage,resulting in cartilage degeneration and loss of subchondral bone homeostasis,finally causing TMJ growth retardation.DR at an early stage could significantly alleviate cartilage degeneration and restore TMJ cartilage growth potential.展开更多
Cartilage is a nonedible byproduct with little saleable value.However,previous studies have proposed the possibility of producing peptides from cartilage with immune function modulation potential.The current study aim...Cartilage is a nonedible byproduct with little saleable value.However,previous studies have proposed the possibility of producing peptides from cartilage with immune function modulation potential.The current study aimed to investigate the potential anti-inflammatory activity of peptides derived from sturgeon(Acipenser schrenckii)cartilage in lipopolysaccharide(LPS)-stimulated RAW264.7 macrophages.Five peptide sequences,including four novel peptides,were identified from ethanol-soluble cartilage hydrolysates.Among these five peptides,LTGP,LLLE,LLEL and VGPAGPAGP reduced the production of nitric oxide(NO)and interleukin-6(IL-6)while increasing interleukin-10(IL-10)excretion.Transcriptome analysis suggested the inhibition of activated mitogen-activated protein kinase(MAPK)and interleukin-17(IL-17)signaling pathways after LLEL intervention.MAPK,which is involved in the IL-17 signaling pathway,was further proved to be blocked by downregulating the phosphorylation of p38,extracellular-signal regulated protein kinase(ERK),and c-jun N-terminal kinase(JNK).This novel peptide offers an attractive approach to develop functional foods.展开更多
Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for effi...Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for efficacious cartilage repair,and long-term patient outcomes are not satisfying.Three-dimensional bioprinting has been used to fabricate biochemical and biophysical environments that aim to recapitulate the native microenvironment and promote tissue regeneration.However,conventional in vitro bioprinting has limitations due to the challenges associated with the fabrication and implantation of bioprinted constructs and their integration with the native cartilage tissue.In situ bioprinting is a novel strategy to directly deliver bioinks to the desired anatomical site and has the potential to overcome major shortcomings associated with conventional bioprinting.In this review,we focus on the new frontier of robotic-assisted in situ bioprinting surgical systems for cartilage regeneration.We outline existing clinical approaches and the utilization of robotic-assisted surgical systems.Handheld and robotic-assisted in situ bioprinting techniques including minimally invasive and non-invasive approaches are defined and presented.Finally,we discuss the challenges and potential future perspectives of in situ bioprinting for cartilage applications.展开更多
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional...At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.展开更多
This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant diff...This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant differences in their concentration. While examining the surface properties of OA joints, we found that OA PLs molecules cannot support lubrication, and increased friction was observed. Our lubrication mechanism was based on a surface active phospholipids (SAPL) multibilayer which in OA condition was deactivated and removed from the cartilage surface under OA conditions. Cartilage wettability study clearly demonstrated a significant decrease in hydrophobicity, the contact angle, θ (theta), dropping from 103° from bovine healthy cartilage to 65° in surface partially depleted and 35.1° for completely depleted surface. These results are discussed in the context that surface active phospholipid (SAPL) and lubricin, each has specific roles in a lamellar-repulsive lubrication system. However, deactivated phospholipid molecules are major indicator of cartilage wear (model) introduced in this study.展开更多
As the main regulator of cartilage development, Sox9 gene can initiate transcription and expression of various enzymes and protein genes required for car- tilage growth and development. During this process, the expres...As the main regulator of cartilage development, Sox9 gene can initiate transcription and expression of various enzymes and protein genes required for car- tilage growth and development. During this process, the expression and function of Sex9 are also regulated by a variety of factors and signaling pathways. More re- search is concerned about the positive regulation. At present, some studies dis- closed that negative regulation of Sox9 expression existed unique mechanisms. This study will discuss and summarize the negative regulatory mechanism of Sox9 gene by microRNA, NF-κB, Wnt, Notch and other factors and signaling pathways, in or- der to provide the basic framework for further investigating the expression and func- tion of Sox9 in cartilage development.展开更多
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively partici...The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.展开更多
Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimul...Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.展开更多
AIM To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage.METHODS Twenty-nine dogs were divided in two experimental groups: Group M-leg leng...AIM To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage.METHODS Twenty-nine dogs were divided in two experimental groups: Group M-leg lengthening with manual distraction(1 mm/d in 4 steps), Group A-automated distraction(1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30 th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peronealand tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed.RESULTS Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage(thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group.CONCLUSION Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes.展开更多
Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for u...Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix(ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed.展开更多
AIM To investigate whether normal thickness cartilage in osteoarthritic knees demonstrate depletion of proteoglycan or collagen content compared to healthy knees.METHODS Magnetic resonance(MR) images were acquired fro...AIM To investigate whether normal thickness cartilage in osteoarthritic knees demonstrate depletion of proteoglycan or collagen content compared to healthy knees.METHODS Magnetic resonance(MR) images were acquired from5 subjects scheduled for total knee arthroplasty(TKA)(mean age 70 years) and 20 young healthy control subjects without knee pain(mean age 28.9 years). MR images of T1ρ mapping, T2 mapping, and fat suppressed proton-density weighted sequences were obtained.Following TKA each condyle was divided into 4 parts(distal medial, posterior medial, distal lateral, posterior lateral) for cartilage analysis. Twenty specimens(bone and cartilage blocks) were examined. For each joint,the degree and extent of cartilage destruction was determined using the Osteoarthritis Research Society International cartilage histopathology assessment system.In magnetic resonance imaging(MRI) analysis, 2 readers performed cartilage segmentation for T1ρ/T2 values and cartilage thickness measurement.RESULTS Eleven areas in MRI including normal or near normal cartilage thickness were selected. The corresponding histopathological sections demonstrated mild to moderate osteoarthritis(OA). There was no significant difference in cartilage thickness in MRI between control and advanced OA samples [medial distal condyle, P = 0.461;medial posterior condyle(MPC), P = 0.352; lateral distal condyle, P = 0.654; lateral posterior condyle, P = 0.550],suggesting arthritic specimens were morphologically similar to normal or early staged degenerative cartilage.Cartilage T2 and T1ρ values from the MPC were significantly higher among the patients with advanced OA(P= 0.043). For remaining condylar samples there was no statistical difference in T2 and T1ρ values between cases and controls but there was a trend towards higher values in advanced OA patients. CONCLUSION Though cartilage is morphologically normal or near normal, degenerative changes exist in advanced OA patients. These changes can be detected with T2 and T1ρ MRI techniques.展开更多
文摘Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.
文摘BACKGROUND This case report highlights a rare instance of concurrent keloid and epidermal cyst development at an ear cartilage harvest site following rhinoplasty in a 25-year-old woman.Both conditions,which typically stem from skin trauma,seldom occur together,demonstrating the exceptional characteristics of this case.CASE SUMMARY The patient underwent successful surgical removal of both the keloid and the epidermal cyst.Postoperative treatment included the use of silicone sheets,gel,and oral tranilast to reduce scarring.No recurrence was observed over a 6-mo follow-up period,indicating effective management of the condition.CONCLUSION The effective management of complex skin trauma cases underscores the need for individualized treatment strategies in plastic surgery.
基金approved by the Ethical Committee for Human Subjects at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine(20240276).All participants or their guardians provided written consent for their medical information to be used for publication.
文摘Objective Endoscopic tympanoplasty includes various surgical methods,such as internal repair,interlayer repair,and external overlay.This technique requires autologous materials,allografts,and xenografts,which are used to repair tympanic membrane(TM)perforation.To obtain good results,appropriate surgical methods and repair materials should be selected.This study aims to assess the efficacy of repairing refractory TM perforations in the porcine small intestinal submucosa(SIS)during transcanal endoscopic type I tympanoplasty.Method A retrospective chart review was performed on patients who underwent TM perforation repair with porcine SIS and tragus cartilage between January 2022 and September 2022 at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine.Perforation size,tympanic status,pre-and postoperative symptoms,follow-up data,wound healing rates,and hearing improvement were analysed.Results Of the 115 patients included in the study,56 underwent interlayer repair with porcine SIS of the TM,and 59 patients underwent internal repair with tragus cartilage.No significant difference was found between the two groups at baseline in terms of age,sex,disease course,perforation side,tympanic status,underlying disease,or preoperative infection.The total postoperative effective rate of interlayer implantation with porcine SIS was 91.07%(51 patients),and that of internal implantation with tragus cartilage was 88.14%(52 patients).No significant difference was found in terms of the graft success rate between the two surgical methods(p=0.887).Postoperative pure tone auditory(PTA)and air-bone gap(ABG)density significantly increased in both groups compared with before surgery(p<0.05).However,the postoperative PTA and ABG density were not significantly different 3 months post-surgery between the two groups(p>0.05).Compared to those in the internal implantation group,the patients in the interlayer group had a shorter operation duration(51.36±6.76 min vs.59.71±7.45 min,t=6.298,p<0.001)and less blood loss(11.91±2.61 mL vs.15.27±2.57 mL,t=7.019,p<0.001).Conclusions Our study suggests that the porcine SIS,as well as the tragus cartilage,has a high success rate in repairing irreversible TM perforation.Endoscopic tympanoplasty via interlayer implantation with porcine SIS offers distinct advantages,including the absence of donor-site incision and scar formation,and ease of graft modification and manipulation.
文摘BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate magnetic resonance imaging(MRI)multisequence imaging for improving the diagnostic accuracy of adult elbow cartilage injury.METHODS A total of 60 patients diagnosed with elbow cartilage injury in our hospital from January 2020 to December 2021 were enrolled in this retrospective study.We analyzed the accuracy of conventional MRI sequences(T1-weighted imaging,T2-weighted imaging,proton density weighted imaging,and T2 star weighted image)and Three-Dimensional Coronary Imaging by Spiral Scanning(3D-CISS)in the diagnosis of elbow cartilage injury.Arthroscopy was used as the gold standard to evaluate the diagnostic effect of single and combination sequences in different injury degrees and the consistency with arthroscopy.RESULTS The diagnostic accuracy of 3D-CISS sequence was 89.34%±4.98%,the sensitivity was 90%,and the specificity was 88.33%,which showed the best performance among all sequences(P<0.05).The combined application of the whole sequence had the highest accuracy in all sequence combinations,the accuracy of mild injury was 91.30%,the accuracy of moderate injury was 96.15%,and the accuracy of severe injury was 93.33%(P<0.05).Compared with arthroscopy,the combination of all MRI sequences had the highest consistency of 91.67%,and the kappa value reached 0.890(P<0.001).CONCLUSION Combination of 3D-CISS and each sequence had significant advantages in improving MRI diagnostic accuracy of elbow cartilage injuries in adults.Multisequence MRI is recommended to ensure the best diagnosis and treatment.
文摘BACKGROUND Endoscopic ear surgery(EES)provides a magnified,high-definition view of the otological surgical field.EES allows otologists to avoid surgical incisions and associated postoperative complications.It is an ideal technique for the perfor-mance and teaching of tympanoplasty.AIM To examine the efficacy of total Endoscopic Push Through Tragal Cartilage Tympanoplasty(EPTTCT),at our institution over a 10-year period.METHODS A retrospective analysis of 168 cases of EPTTCT for closure of small to medium tympanic membrane perforations from 2013-2023 was conducted.Patient sex,age range(pediatric vs adult),etiology of injury,success rate,complications,and postoperative hearing status were collected.RESULTS Graft uptake results indicated success in 94%of patients,with less than a 2%complication rate.Postoperative pure tone audiometry demonstrated hearing status improvement in 69%of patients.CONCLUSION EPTTCT has been shown to be effective in tympanic membrane perforation closures with minimal complications.This study further demonstrates the efficacy and safety of these procedures in a single-center review.
文摘The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading to joint damage.Conventional drugs cannot effectively reach this inflammatory source within the dense cartilage.
基金National Natural Science Foundation of China(81771047 to J.X.,81670978 and 81870754 to X.Z.)Sichuan Science&Technology Innovation Talent Project(2022JDRC0044)。
文摘Articular cartilage serves as a low-friction,load-bearing tissue without the support with blood vessels,lymphatics and nerves,making its repair a big challenge.Transforming growth factor-beta 3(TGF-β3),a vital member of the highly conserved TGF-βsuperfamily,plays a versatile role in cartilage physiology and pathology.TGF-β3 influences the whole life cycle of chondrocytes and mediates a series of cellular responses,including cell survival,proliferation,migration,and differentiation.Since TGF-β3 is involved in maintaining the balance between chondrogenic differentiation and chondrocyte hypertrophy,its regulatory role is especially important to cartilage development.Increased TGF-β3 plays a dual role:in healthy tissues,it can facilitate chondrocyte viability,but in osteoarthritic chondrocytes,it can accelerate the progression of disease.Recently,TGF-β3 has been recognized as a potential therapeutic target for osteoarthritis(OA)owing to its protective effect,which it confers by enhancing the recruitment of autologous mesenchymal stem cells(MSCs)to damaged cartilage.However,the biological mechanism of TGF-β3 action in cartilage development and OA is not well understood.In this review,we systematically summarize recent progress in the research on TGF-β3 in cartilage physiology and pathology,providing up-to-date strategies for cartilage repair and preventive treatment.
基金National Key R&D Program of China(2022YFA1103200,2017YFA0106400,2021YFA1100900)Ministry of Science and Technology of China(2020YFC2002804)+3 种基金National Natural Science Foundation of China(91749124,81772389,82070108)Major Program of Development Fund for Shanghai Zhangjiang National Innovation Demonstration Zone(ZJ2018-ZD-004)Fundamental Research Funds for the Central Universities(22120190149 and kx0200020173386)Peak Disciplines(Type IV)of Institutions of Higher Learning in Shanghai。
文摘Fibroblast activation protein(Fap)is a serine protease that degrades denatured type I collagen,α2-antiplasmin and FGF21.Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin(Oln).Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis(RA).However,whether Fap plays a critical role in osteoarthritis(OA)remains poorly understood.Here,we found that Fap is significantly elevated in osteoarthritic synovium,while the genetic deletion or pharmacological inhibition of Fap significantly ameliorated posttraumatic OA in mice.Mechanistically,we found that Fap degrades denatured type II collagen(Col II)and Mmp13-cleaved native Col II.Intra-articular injection of r Fap significantly accelerated Col II degradation and OA progression.In contrast,Oln is expressed in the superficial layer of articular cartilage and is significantly downregulated in OA.Genetic deletion of Oln significantly exacerbated OA progression,which was partially rescued by Fap deletion or inhibition.Intra-articular injection of r Oln significantly ameliorated OA progression.Taken together,these findings identify Fap as a critical pathogenic factor in OA that could be targeted by both synthetic and endogenous inhibitors to ameliorate articular cartilage degradation.
基金supported by the National Natural Science Foundation of China(NSFC)No.82071139(to S.Z.),81873720(to B.Y.),82270999(to R.B.)Key R&D Program of Sichuan Provincial Department of Science and Technology No.23ZDYF2130(to S.Z.)+2 种基金Sichuan Science and Technology Program No.2022NSFSC1382(to Y.H.)‘From Zero to One’Innovative Research Program of Sichuan University No.2022SCUH0022(to R.B.)Clinical Research Program of West China Hospital of Stomatology,LCYJ2023-DL-5。
文摘The anterior disc displacement(ADD)leads to temporomandibular joint osteoarthritis(TMJOA)and mandibular growth retardation in adolescents.To investigate the potential functional role of fibrocartilage stem cells(FCSCs)during the process,a surgical ADDTMJOA mouse model was established.From 1 week after model generation,ADD mice exhibited aggravated mandibular growth retardation with osteoarthritis(OA)-like joint cartilage degeneration,manifesting with impaired chondrogenic differentiation and loss of subchondral bone homeostasis.Lineage tracing using Gli1^(-)CreER^(+);Tm^(fl/-)mice and Sox9-CreER^(+);Tm^(fl/-)mice showed that ADD interfered with the chondrogenic capacity of Gli1+FCSCs as well as osteogenic differentiation of Sox9+lineage,mainly in the middle zone of TMJ cartilage.Then,a surgically induced disc reposition(DR)mouse model was generated.The inhibited FCSCs capacity was significantly alleviated by DR treatment in ADD mice.And both the ADD mice and adolescent ADD patients had significantly relieved OA phenotype and improved condylar growth after DR treatment.In conclusion,ADD-TMJOA leads to impaired chondrogenic progenitor capacity and osteogenesis differentiation of FCSCs lineage,resulting in cartilage degeneration and loss of subchondral bone homeostasis,finally causing TMJ growth retardation.DR at an early stage could significantly alleviate cartilage degeneration and restore TMJ cartilage growth potential.
基金supported by the China Agriculture Research System(CARS-46),China.
文摘Cartilage is a nonedible byproduct with little saleable value.However,previous studies have proposed the possibility of producing peptides from cartilage with immune function modulation potential.The current study aimed to investigate the potential anti-inflammatory activity of peptides derived from sturgeon(Acipenser schrenckii)cartilage in lipopolysaccharide(LPS)-stimulated RAW264.7 macrophages.Five peptide sequences,including four novel peptides,were identified from ethanol-soluble cartilage hydrolysates.Among these five peptides,LTGP,LLLE,LLEL and VGPAGPAGP reduced the production of nitric oxide(NO)and interleukin-6(IL-6)while increasing interleukin-10(IL-10)excretion.Transcriptome analysis suggested the inhibition of activated mitogen-activated protein kinase(MAPK)and interleukin-17(IL-17)signaling pathways after LLEL intervention.MAPK,which is involved in the IL-17 signaling pathway,was further proved to be blocked by downregulating the phosphorylation of p38,extracellular-signal regulated protein kinase(ERK),and c-jun N-terminal kinase(JNK).This novel peptide offers an attractive approach to develop functional foods.
基金the funding provided by the United Kingdom(UK)Engineering and Physical Sciences Research Council(EPSRC)Doctoral Prize Fellowship(EP/R513131/1)。
文摘Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for efficacious cartilage repair,and long-term patient outcomes are not satisfying.Three-dimensional bioprinting has been used to fabricate biochemical and biophysical environments that aim to recapitulate the native microenvironment and promote tissue regeneration.However,conventional in vitro bioprinting has limitations due to the challenges associated with the fabrication and implantation of bioprinted constructs and their integration with the native cartilage tissue.In situ bioprinting is a novel strategy to directly deliver bioinks to the desired anatomical site and has the potential to overcome major shortcomings associated with conventional bioprinting.In this review,we focus on the new frontier of robotic-assisted in situ bioprinting surgical systems for cartilage regeneration.We outline existing clinical approaches and the utilization of robotic-assisted surgical systems.Handheld and robotic-assisted in situ bioprinting techniques including minimally invasive and non-invasive approaches are defined and presented.Finally,we discuss the challenges and potential future perspectives of in situ bioprinting for cartilage applications.
基金supported by the National Natural Science Foundation of China(No.81171731)the Project of Chengdu Science and Technology Bureau(Nos.2021-YF05-01619-SN and 2021-RC05-00022-CG)+2 种基金the Science and Technology Project of Tibet Autonomous Region(Nos.XZ202202YD0013C and XZ201901-GB-08)the Sichuan Science and Technology Program(No.2022YFG0066)the 1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Nos.ZYJC21026,ZYGD21001 and ZYJC21077).
文摘At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.
文摘This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant differences in their concentration. While examining the surface properties of OA joints, we found that OA PLs molecules cannot support lubrication, and increased friction was observed. Our lubrication mechanism was based on a surface active phospholipids (SAPL) multibilayer which in OA condition was deactivated and removed from the cartilage surface under OA conditions. Cartilage wettability study clearly demonstrated a significant decrease in hydrophobicity, the contact angle, θ (theta), dropping from 103° from bovine healthy cartilage to 65° in surface partially depleted and 35.1° for completely depleted surface. These results are discussed in the context that surface active phospholipid (SAPL) and lubricin, each has specific roles in a lamellar-repulsive lubrication system. However, deactivated phospholipid molecules are major indicator of cartilage wear (model) introduced in this study.
基金Supported by National Natural Science Foundation(31671283)Fundamental Research Fund for the Central Universities(2572014EA05)~~
文摘As the main regulator of cartilage development, Sox9 gene can initiate transcription and expression of various enzymes and protein genes required for car- tilage growth and development. During this process, the expression and function of Sex9 are also regulated by a variety of factors and signaling pathways. More re- search is concerned about the positive regulation. At present, some studies dis- closed that negative regulation of Sox9 expression existed unique mechanisms. This study will discuss and summarize the negative regulatory mechanism of Sox9 gene by microRNA, NF-κB, Wnt, Notch and other factors and signaling pathways, in or- der to provide the basic framework for further investigating the expression and func- tion of Sox9 in cartilage development.
文摘The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.
文摘Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.
基金Supported by Russian Foundation for Basic Research,No.14-4 4-00010
文摘AIM To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage.METHODS Twenty-nine dogs were divided in two experimental groups: Group M-leg lengthening with manual distraction(1 mm/d in 4 steps), Group A-automated distraction(1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30 th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peronealand tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed.RESULTS Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage(thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group.CONCLUSION Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes.
基金supported by NSFC (nos 61471168, 61571187,61301043,and 61527806)China Postdoctoral Science Foundation (2016T90403)the Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013)448]
文摘Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix(ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed.
基金Supported by The National Center for Research Resources and the National Center for Advancing Translational Sciences,National Institutes of Health,No.UL1 TR000153
文摘AIM To investigate whether normal thickness cartilage in osteoarthritic knees demonstrate depletion of proteoglycan or collagen content compared to healthy knees.METHODS Magnetic resonance(MR) images were acquired from5 subjects scheduled for total knee arthroplasty(TKA)(mean age 70 years) and 20 young healthy control subjects without knee pain(mean age 28.9 years). MR images of T1ρ mapping, T2 mapping, and fat suppressed proton-density weighted sequences were obtained.Following TKA each condyle was divided into 4 parts(distal medial, posterior medial, distal lateral, posterior lateral) for cartilage analysis. Twenty specimens(bone and cartilage blocks) were examined. For each joint,the degree and extent of cartilage destruction was determined using the Osteoarthritis Research Society International cartilage histopathology assessment system.In magnetic resonance imaging(MRI) analysis, 2 readers performed cartilage segmentation for T1ρ/T2 values and cartilage thickness measurement.RESULTS Eleven areas in MRI including normal or near normal cartilage thickness were selected. The corresponding histopathological sections demonstrated mild to moderate osteoarthritis(OA). There was no significant difference in cartilage thickness in MRI between control and advanced OA samples [medial distal condyle, P = 0.461;medial posterior condyle(MPC), P = 0.352; lateral distal condyle, P = 0.654; lateral posterior condyle, P = 0.550],suggesting arthritic specimens were morphologically similar to normal or early staged degenerative cartilage.Cartilage T2 and T1ρ values from the MPC were significantly higher among the patients with advanced OA(P= 0.043). For remaining condylar samples there was no statistical difference in T2 and T1ρ values between cases and controls but there was a trend towards higher values in advanced OA patients. CONCLUSION Though cartilage is morphologically normal or near normal, degenerative changes exist in advanced OA patients. These changes can be detected with T2 and T1ρ MRI techniques.