Thyroid stimulating hormone receptor(TSHR) is thought to be a significant candidate for genetic susceptibility to Graves' disease(GD).However,the association between TSHR gene polymorphism and the risk of GD rema...Thyroid stimulating hormone receptor(TSHR) is thought to be a significant candidate for genetic susceptibility to Graves' disease(GD).However,the association between TSHR gene polymorphism and the risk of GD remains controversial.In this study,we investigated the relationship between the two conditions by meta-analysis.We searched all relevant case-control studies in PubMed,Web of Science,CNKI and Wanfang for literature available until May2015,and chose studies on two single nucleotide polymorphisms(SNPs):rs 179247 and rsl2101255,within TSHR intron-1.Bias of heterogeneity test among studies was determined by the fixed or random effect pooled measure,and publication bias was examined by modified Begg's and Egger's test.Eight eligible studies with 15 outcomes were involved in this meta-analysis,including 6,976 GD cases and 7,089 controls from China,Japan,Poland,UK and Brazil.Pooled odds ratios(ORs) for allelic comparisons showed that both TSHR rsl79247A/G and rsl2101255T/C polymorphism had significant association with GD(OR=1.422,95%CI=1.353—1.495,P〈0.001,P_(heterogeneity)=0.448;OR= 1.502,95%CI:1.410-1.600,P〈0.001,P_(heterogeneity)=0.642),and the associations were the same under dominant,recessive and co-dominant models.In subgroup analyses,the conclusions are also consistent with all those in Asian,European and South America subgroups(P〈0.001).Our meta-analysis revealed a significant association between TSHR rsl79247A/G and rsl2101255T/C polymorphism with GD in five different populations from Asia,Europe and South America.Further studies are needed in other ethnic backgrounds to independently confirm our findings.展开更多
Dysfunction of CD8^(+)T cells in the tumor microenvironment(TME)contributes to tumor immune escape and immunotherapy tolerance.The effects of hormones such as leptin,steroid hormones,and glucocorticoids on T cell func...Dysfunction of CD8^(+)T cells in the tumor microenvironment(TME)contributes to tumor immune escape and immunotherapy tolerance.The effects of hormones such as leptin,steroid hormones,and glucocorticoids on T cell function have been reported previously.However,the mechanism underlying thyroid-stimulating hormone(TSH)/thyroid-stimulating hormone receptor(TSHR)signaling in CD8^(+)T cell exhaustion and tumor immune evasion remain poorly understood.This study was aimed at investigating the effects of TSH/TSHR signaling on the function of CD8^(+)T cells and immune evasion in colorectal cancer(CRC).Methods:TSHR expression levels in CD8^(+)T cells were assessed with immunofluorescence and flow cytometry.Functional investigations involved manipulation of TSHR expression in cellular and mouse models to study its role in CD8^(+)T cells.Mechanistic insights were mainly gained through RNAsequencing,Western blotting,chromatin immunoprecipitation and luciferase activity assay.Immunofluorescence,flow cytometry and Western blotting were used to investigate the source of TSH and TSHR in CRC tissues.Results:TSHR was highly expressed in cancer cells and CD8^(+)T cells in CRC tissues.TSH/TSHR signaling was identified as the intrinsic pathway promoting CD8^(+)T cell exhaustion.Conditional deletion of TSHR in CD8^(+)tumorinfiltrating lymphocytes(TILs)improved effector differentiation and suppressed the expression of immune checkpoint receptors such as programmed cell death 1(PD-1)and hepatitis A virus cellular receptor 2(HAVCR2 or TIM3)through the protein kinase A(PKA)/cAMP-response element binding protein(CREB)signaling pathway.CRC cells secreted TSHR via exosomes to increase the TSHR level in CD8^(+)T cells,resulting in immunosuppression in the TME.Myeloid-derived suppressor cells(MDSCs)was the main source of TSH within the TME.Low expression of TSHR in CRC was a predictor of immunotherapy response.Conclusions:The present findings highlighted the role of endogenous TSH/TSHR signaling in CD8^(+)T cell exhaustion and immune evasion in CRC.TSHR may be suitable as a predictive and therapeutic biomarker in CRC immunotherapy.展开更多
INTRODUCTION Autoimmunity is defined as, a condition characterized by a specific humoral or cell-mediated immune response against the constituents of the body's own tissues (autoantigens). In numerous autoimmune di...INTRODUCTION Autoimmunity is defined as, a condition characterized by a specific humoral or cell-mediated immune response against the constituents of the body's own tissues (autoantigens). In numerous autoimmune diseases, such an immune response is well recognized that causes damage to the self-constituents of body tissues by the products of the immune system. Graves' hyperthyroidism occurs after the loss of tolerance to the thyroid stimulating hormone receptor (TSHR) and the generation of thyroid stimulatory antibodies that mimic the action of thyroid-stimulating hormone (TSH).展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.81102032)
文摘Thyroid stimulating hormone receptor(TSHR) is thought to be a significant candidate for genetic susceptibility to Graves' disease(GD).However,the association between TSHR gene polymorphism and the risk of GD remains controversial.In this study,we investigated the relationship between the two conditions by meta-analysis.We searched all relevant case-control studies in PubMed,Web of Science,CNKI and Wanfang for literature available until May2015,and chose studies on two single nucleotide polymorphisms(SNPs):rs 179247 and rsl2101255,within TSHR intron-1.Bias of heterogeneity test among studies was determined by the fixed or random effect pooled measure,and publication bias was examined by modified Begg's and Egger's test.Eight eligible studies with 15 outcomes were involved in this meta-analysis,including 6,976 GD cases and 7,089 controls from China,Japan,Poland,UK and Brazil.Pooled odds ratios(ORs) for allelic comparisons showed that both TSHR rsl79247A/G and rsl2101255T/C polymorphism had significant association with GD(OR=1.422,95%CI=1.353—1.495,P〈0.001,P_(heterogeneity)=0.448;OR= 1.502,95%CI:1.410-1.600,P〈0.001,P_(heterogeneity)=0.642),and the associations were the same under dominant,recessive and co-dominant models.In subgroup analyses,the conclusions are also consistent with all those in Asian,European and South America subgroups(P〈0.001).Our meta-analysis revealed a significant association between TSHR rsl79247A/G and rsl2101255T/C polymorphism with GD in five different populations from Asia,Europe and South America.Further studies are needed in other ethnic backgrounds to independently confirm our findings.
基金supported by the National Key R&D Program of China(Grant No.2021YFF1201004)the National Natural Science Foundation of China(Grant No.82273358,No.81802306,No.81903002,No.81672821,No.82071742,No.32270926)Natural Science Foundation of Guangdong Province of China(Grant No.2019A1515012196,No.2022A1515012059).
文摘Dysfunction of CD8^(+)T cells in the tumor microenvironment(TME)contributes to tumor immune escape and immunotherapy tolerance.The effects of hormones such as leptin,steroid hormones,and glucocorticoids on T cell function have been reported previously.However,the mechanism underlying thyroid-stimulating hormone(TSH)/thyroid-stimulating hormone receptor(TSHR)signaling in CD8^(+)T cell exhaustion and tumor immune evasion remain poorly understood.This study was aimed at investigating the effects of TSH/TSHR signaling on the function of CD8^(+)T cells and immune evasion in colorectal cancer(CRC).Methods:TSHR expression levels in CD8^(+)T cells were assessed with immunofluorescence and flow cytometry.Functional investigations involved manipulation of TSHR expression in cellular and mouse models to study its role in CD8^(+)T cells.Mechanistic insights were mainly gained through RNAsequencing,Western blotting,chromatin immunoprecipitation and luciferase activity assay.Immunofluorescence,flow cytometry and Western blotting were used to investigate the source of TSH and TSHR in CRC tissues.Results:TSHR was highly expressed in cancer cells and CD8^(+)T cells in CRC tissues.TSH/TSHR signaling was identified as the intrinsic pathway promoting CD8^(+)T cell exhaustion.Conditional deletion of TSHR in CD8^(+)tumorinfiltrating lymphocytes(TILs)improved effector differentiation and suppressed the expression of immune checkpoint receptors such as programmed cell death 1(PD-1)and hepatitis A virus cellular receptor 2(HAVCR2 or TIM3)through the protein kinase A(PKA)/cAMP-response element binding protein(CREB)signaling pathway.CRC cells secreted TSHR via exosomes to increase the TSHR level in CD8^(+)T cells,resulting in immunosuppression in the TME.Myeloid-derived suppressor cells(MDSCs)was the main source of TSH within the TME.Low expression of TSHR in CRC was a predictor of immunotherapy response.Conclusions:The present findings highlighted the role of endogenous TSH/TSHR signaling in CD8^(+)T cell exhaustion and immune evasion in CRC.TSHR may be suitable as a predictive and therapeutic biomarker in CRC immunotherapy.
基金Financial support and sponsorship This study was supported by the grants from National Natural Science Foundation of China (No. 81170729 and No. 81200574).
文摘INTRODUCTION Autoimmunity is defined as, a condition characterized by a specific humoral or cell-mediated immune response against the constituents of the body's own tissues (autoantigens). In numerous autoimmune diseases, such an immune response is well recognized that causes damage to the self-constituents of body tissues by the products of the immune system. Graves' hyperthyroidism occurs after the loss of tolerance to the thyroid stimulating hormone receptor (TSHR) and the generation of thyroid stimulatory antibodies that mimic the action of thyroid-stimulating hormone (TSH).