Mesoporous Ti O2/Carbon beads have been prepared via a facile impregnation-carbonization approach, in which a porous anion-exchange resin and K2 Ti O(C2O4)2were used as hard carbon and titanium source, respectively.Ch...Mesoporous Ti O2/Carbon beads have been prepared via a facile impregnation-carbonization approach, in which a porous anion-exchange resin and K2 Ti O(C2O4)2were used as hard carbon and titanium source, respectively.Characterization results reveal that the self-assembled composites have disordered mesostructure, uniform mesopores,large pore volumes, and high surface areas. The mesopore walls are composed of amorphous carbon, well-dispersed and confined anatase or rutile nanoparticles. Some anatase phase of Ti O2 was transformed to rutile phase via an increase of carbonization temperature or repeated impregnation of the resin with Ti O(C2O4)22-species. X-ray photoelectron spectroscopy, carbon, hydrogen, and nitrogen element analysis, and thermal gravity analysis results indicate the doping of carbon into the Ti O2 lattice and strong interaction between carbon and Ti O2 nanoparticles. A synergy effect by carbon and Ti O2 in the composites has been discussed herein on the degradation of methyl orange under visible light. The dye removal process involves adsorption of the dye from water by the mesopores in the composites, followed by photodegradation on the separated dye-loaded catalysts. Mesopores allow full access of the dye molecules to the surface of Ti O2 nanoparticles.Importantly, the bead format of such composite enables their straightforward separation from the reaction mixture in their application as a liquid-phase heterogeneous photodegradation catalyst.展开更多
Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol–gel method. A number of techniques including X-ray diffraction(XRD), ultraviolet–visible(UV–Vis), Rutherford...Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol–gel method. A number of techniques including X-ray diffraction(XRD), ultraviolet–visible(UV–Vis), Rutherford backscattering spectrometry(RBS), thermal gravimetric analysis(TGA)Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties o synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution o dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration catalyst dose and p H on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalys and gain a better understanding of the process.展开更多
基金supported by Natural Science Foundation of China(21303031,21353004,51472062)Natural Science Foundation of Heilongjiang Province of China(B201010)+2 种基金Fundamental Research Funds for the Central Universities(HIT.IBRSEM.201326)Program for Science&Technology Innovation Talent in Harbin(2013RFQXJ004,2007RFXXG018)China Postdoctoral Science Foundation(2012T50334,20100480991)
文摘Mesoporous Ti O2/Carbon beads have been prepared via a facile impregnation-carbonization approach, in which a porous anion-exchange resin and K2 Ti O(C2O4)2were used as hard carbon and titanium source, respectively.Characterization results reveal that the self-assembled composites have disordered mesostructure, uniform mesopores,large pore volumes, and high surface areas. The mesopore walls are composed of amorphous carbon, well-dispersed and confined anatase or rutile nanoparticles. Some anatase phase of Ti O2 was transformed to rutile phase via an increase of carbonization temperature or repeated impregnation of the resin with Ti O(C2O4)22-species. X-ray photoelectron spectroscopy, carbon, hydrogen, and nitrogen element analysis, and thermal gravity analysis results indicate the doping of carbon into the Ti O2 lattice and strong interaction between carbon and Ti O2 nanoparticles. A synergy effect by carbon and Ti O2 in the composites has been discussed herein on the degradation of methyl orange under visible light. The dye removal process involves adsorption of the dye from water by the mesopores in the composites, followed by photodegradation on the separated dye-loaded catalysts. Mesopores allow full access of the dye molecules to the surface of Ti O2 nanoparticles.Importantly, the bead format of such composite enables their straightforward separation from the reaction mixture in their application as a liquid-phase heterogeneous photodegradation catalyst.
文摘Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol–gel method. A number of techniques including X-ray diffraction(XRD), ultraviolet–visible(UV–Vis), Rutherford backscattering spectrometry(RBS), thermal gravimetric analysis(TGA)Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties o synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution o dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration catalyst dose and p H on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalys and gain a better understanding of the process.