期刊文献+
共找到223篇文章
< 1 2 12 >
每页显示 20 50 100
Enhanced wear resistance,antibacterial performance,and biocompatibility using nanotubes containing nano-Ag and bioceramics in vitro
1
作者 Qingge Wang Jia Liu +9 位作者 Hong Wu Jingbo Liu Yaojia Ren Luxin Liang Xinxin Yan Ian Baker Shifeng Liu V.V.Uglov Chengliang Yang Liqiang Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期670-686,共17页
A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the s... A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis. 展开更多
关键词 βti alloy Surface modification Wear resistance Corrosion resistance Osteogenic behavior Antibacterial activity
下载PDF
Metallurgical Microstructure Complexity in the Electron Beam Welding (EBW) Joint of Ti6246
2
作者 Daniel Moreno Yohanan Nachmana +5 位作者 Roei Saraga Tal Rokah Denis Panchenco Michael Mansano Elinor Itzhaky Moshe Shapira 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期100-111,共12页
Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys i... Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone. 展开更多
关键词 ti Alloys WELDING Phase Formation HARDNESS METALLOGRAPHY
下载PDF
EFFECTS OF Nb/Ti+ Nb MICRO ALLOYING ON 900℃ TENSILE PROPERTIES OF ALLOYGH652 被引量:1
3
作者 Z.F.Peng1) ,Y.Y.Ren1) , Q.S. Mei1) ,Y.Q.Wang2) ,X.Y.Zhang2) and M.S.Ye2) 1) Department of Materials Engineering, Wuhan University of Hydraulic and Electric Engineering , Wuhan430072 ,China 2) Department of Superalloys,CentralIron and Steel Research Ins 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第4期436-441,共6页
Theeffectsof Nband Ti+ Nb microalloyingon mechanicalpropertiesand rupturelifeunder900 ℃ tensiletest on alloy GH652 were studied. Among theoriginalalloy GH652 and its Nb/ Ti+ Nb microalloyed alloys, the Ti+ Nb micro... Theeffectsof Nband Ti+ Nb microalloyingon mechanicalpropertiesand rupturelifeunder900 ℃ tensiletest on alloy GH652 were studied. Among theoriginalalloy GH652 and its Nb/ Ti+ Nb microalloyed alloys, the Ti+ Nb microalloyed alloy exhibited optimum com bined900℃ tensilestrength and plasticity and longer 900℃ 49 MPa prolonged tensile rup turelife as well. The role of refractory alloying elementscould be effectively brought intoplay with highertemperaturesolution treatment. Coordination strengthening of Matrix andgrain boundary wasthekeyfactoroflifetimeextension andthe mobilityof dislocationsinthematrix wasresponsableforthe plasticity ofthe micro alloyedsamples. 展开更多
关键词 GH652 Nb/ ti+ Nb micro alloying 900 tensile properties rupture life alloy
下载PDF
Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy 被引量:2
4
作者 Tian-yu Liu Kun Shi +6 位作者 Jun Zhao Shi-bing Liu You-wei Zhang Hong-yu Liu Tian-yi Liu Xiao-ming Chen Xin-min Mei 《China Foundry》 SCIE CAS CSCD 2023年第1期49-56,共8页
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ... Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity. 展开更多
关键词 hot isostatic pressing processing parameters ti60 titanium alloy DEFECTS composition uniformity microstructure mechanical properties
下载PDF
Effect of Nb and alloying elements on interface reaction between high Nb-containing TiAl alloys and ZrO_2-based ceramic moulds
5
作者 Liang Yang Wen-bin Kan +3 位作者 You-wei Zhang Chun-ling Bao Shi-bing Liu Jun-pin Lin 《China Foundry》 SCIE CAS 2015年第5期362-366,共5页
In the present study, Ti-45Al-(6, 7, 8)Nb(at%) and Ti-45Al-8Nb-0.5(Mn, Si, Y, B) alloys were prepared by arc melting and casting into Zr O2(Y2O3 stabilized) ceramic moulds to study the effect of alloying elements Nb a... In the present study, Ti-45Al-(6, 7, 8)Nb(at%) and Ti-45Al-8Nb-0.5(Mn, Si, Y, B) alloys were prepared by arc melting and casting into Zr O2(Y2O3 stabilized) ceramic moulds to study the effect of alloying elements Nb and Mn, Si, Y, B on the interfacial reaction between casting Ti Al alloys and ceramic moulds by SEM, and the elements' distribution in the interface reaction layer by line scanning. The results showed that with an increase in Nb content, the interfacial reaction weakened and the thickness of the reaction layer decreased gradually. The interface reaction thickness of the alloys with Nb content of 6, 7, 8at% were 60, 34 and 26 μm, respectively. Clearly, the addition of 8at% Nb to Ti-45 Al is the best for the thickness of the reaction layer. The addition of Nb would form a Nb-rich film in the reaction layer, which could reduce the solubility of oxygen in the interface, and suppress further diffusion of oxygen to the matrix. If the same content of Mn, Si, Y, or B alloying elements were added respectively to Ti-45Al-8Nb, the thickness of the interface reaction layer from large to small was as follows: Mn>Si>Y>B. The interface reaction thickness increased after 0.5at% Mn added, had no obvious change after 0.5at% Si addition, and decreased after adding 0.5at% Y or B. The introduced elements, which formed a protective film or/and promoted the formation of a dense aluminum oxide layer, would be of benefit to the resistance of interfacial reaction. 展开更多
关键词 high Nb containing ti Al alloys investment casting interface reaction alloying
下载PDF
Ab initio study of chemical effect on structural properties of Ti–Al melts
6
作者 冯运 冯艳 彭海龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期556-560,共5页
We study chemical effect on the structural properties of Ti–Al melts, with the Al concentration systematically changed,via ab initio molecular dynamics simulations. By calculating the partial coordination numbers, we... We study chemical effect on the structural properties of Ti–Al melts, with the Al concentration systematically changed,via ab initio molecular dynamics simulations. By calculating the partial coordination numbers, we find a preferred connection between the nearest neighbors for Al–Ti pairs. This induces an excess Ti coordination in the cluster characterized by local five-fold symmetry in Voronoi tessellation. Structural entropy measured from the diversity of Voronoi polyhedrons shows an intriguing non-monotonic tendency with concentration: it first decreases to a minimum value at Ti_(40)Al_(60), and then increases beyond this concentration. This implies a more ordered local structure induced by the chemical interaction at the intermediate compositions. The spatial correlation among the crystalline-like or the icosahedral-like clusters also exhibits the highest intensity for Al–Ti pairs, verifying the important role played by the chemical interaction in the local structure connectivity. 展开更多
关键词 ti–Al alloys chemical effect atomic structure ab initio simulations
下载PDF
Numerical Simulation of Low Cycle Fatigue Behavior of Ti_(2)AlNb Alloy Subcomponents
7
作者 Yanju Wang Zhenyu Zhu +1 位作者 Aixue Sha Wenfeng Hao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2655-2676,共22页
Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fati... Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory.Firstly,the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS.The damage model parameters were determined by fatigue tests,and the reliability of fatigue life simulation results of the Ti_(2)AlNb alloy standard open-hole specimen was verified.Meanwhile,the fatigue life of Ti_(2)AlNb alloy Y-section subcomponents was predicted.Under the same initial conditions,the average error of fatigue life predicted by two different models was 20.6%.Finally,the effects of loading amplitude,temperature,and Y-interface angle on fatigue properties of Ti_(2)AlNb Y-section subcomponents were investigated.These results provide a new idea for evaluating the fatigue life of various Ti_(2)AlNb alloy subcomponents. 展开更多
关键词 Fatigue life prediction stiffness degeneration ti2AlNb alloy continuous damage mechanics numerical simulation
下载PDF
Electronic Structure Effect on Model Cluster for L1_2 Structure of Al_3Ti Intermetallic Compound with an Addition of Alloying Elements Fe, Ni and Cu
8
作者 Senying LIU Rongze HU Dongliang ZHAO and Chongyu WANG(Central Iron and Steel Research Institute, Beijing, 100081, China)(To whom correspondence should be addressed)Ping LUO(National Research Cent or Certified Materials, Beijing, 100013, China)Zhongjie P 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期369-372,共4页
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L... By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds. 展开更多
关键词 FE Electronic Structure Effect on Model Cluster for L12 Structure of Al3ti Intermetallic Compound with an Addition of alloying Elements Fe Al ti Cu
下载PDF
Accelerated fracture healing by osteogenic Ti45Nb implants through the PI3K–Akt signaling pathway
9
作者 Jia Tan Jiaxin Li +9 位作者 Zhaoyang Ran Junxiang Wu Dinghao Luo Bojun Cao Liang Deng Xiaoping Li Wenbo Jiang Kai Xie Lei Wang Yongqiang Hao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第6期718-734,共17页
The key to managing fracture is to achieve stable internal fixation,and currently,biologically and mechanically appropriate internal fixation devices are urgently needed.With excellent biocompatibility and corrosion r... The key to managing fracture is to achieve stable internal fixation,and currently,biologically and mechanically appropriate internal fixation devices are urgently needed.With excellent biocompatibility and corrosion resistance,titanium–niobium alloys have the potential to become a new generation of internal fixation materials for fractures.However,the role and mechanism of titanium–niobium alloys on promoting fracture healing are still undefined.Therefore,in this study,we systematically evaluated the bone-enabling properties of Ti45Nb via in vivo and in vitro experiments.In vitro,we found that Ti45Nb has an excellent ability to promote MC3T3-E1 cell adhesion and proliferation without obvious cytotoxicity.Alkaline phosphatase(ALP)activity and alizarin red staining and semiquantitative analysis showed that Ti45Nb enhanced the osteogenic differentiation of MC3T3-E1 cells compared to the Ti6Al4V control.In the polymerase chain reaction experiment,the expression of osteogenic genes in the Ti45Nb group,such as ALP,osteopontin(OPN),osteocalcin(OCN),type 1 collagen(Col-1)and runt-related transcription factor-2(Runx2),was significantly higher than that in the control group.Meanwhile,in the western blot experiment,the expression of osteogenic-related proteins in the Ti45Nb group was significantly increased,and the expression of PI3K–Akt-related proteins was also higher,which indicated that Ti45Nb might promote fracture healing by activating the PI3K–Akt signaling pathway.In vivo,we found that Ti45Nb implants accelerated fracture healing compared to Ti6Al4V,and the biosafety of Ti45Nb was confirmed by histological evaluation.Furthermore,immunohistochemical staining confirmed that Ti45Nb may promote osteogenesis by upregulating the PI3K/Akt signaling pathway.Our study demonstrated that Ti45Nb exerts an excellent ability to promote fracture healing as well as enhance osteoblast differentiation by activating the PI3K/Akt signaling pathway,and its good biosafety has been confirmed,which indicates its clinical translation potential. 展开更多
关键词 Fracture healing ti45Nb alloy PI3K–Akt pathway Orthopedic implant
下载PDF
Synthesis of Y_2O_3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding 被引量:16
10
作者 张可敏 邹建新 +2 位作者 李军 于治水 王慧萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1817-1823,共7页
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer... A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating. 展开更多
关键词 TC4 ti alloy Ni/tiC composite Y2O3 laser cladding HARDNESS surface modification
下载PDF
Arrhenius-type constitutive model and dynamic recrystallization behavior of V-5Cr-5Ti alloy during hot compression 被引量:8
11
作者 李鱼飞 王震宏 +2 位作者 张林英 罗超 赖新春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1889-1900,共12页
To clarify the high temperature flow stress behavior and microstructures evolution of a V-5Cr-5Ti (mass fraction, %) alloy, the isothermal hot compression tests were conducted in the temperature range of 1423-1573 K... To clarify the high temperature flow stress behavior and microstructures evolution of a V-5Cr-5Ti (mass fraction, %) alloy, the isothermal hot compression tests were conducted in the temperature range of 1423-1573 K with strain rates of 0.01, 0.1, and 1 s-1. The results show that the measured flow stress should be revised by friction and the calculated values of friction coefficient m are in the range of 0.45-0.56. Arrhenius-type constitutive equation was developed by regression analysis. The comparison between the experimental and predicted flow stress shows that the R~ and the average absolute relative error (AARE) are 0.948 and 5.44%, respectively. The measured apparent activation energy Qa is in the range of 540-890 kJ/mol. Both dis-continuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) mechanisms are observed in the deformed alloy, but dynamic recovery (DRV) is the dominant softening mechanism up to a true strain of 1.5. 展开更多
关键词 V-5Cr-5ti alloy constitutive model flow stress dynamic recrystallization
下载PDF
Hot deformation behavior of Al-9.0Mg-0.5Mn-0.1Ti alloy based on processing maps 被引量:7
12
作者 范才河 彭英彪 +2 位作者 阳海棠 周伟 严红革 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期289-297,共9页
Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01... Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%. 展开更多
关键词 spray forming Al-9.0Mg-0.5Mn-0.1ti alloy hot compressing deformation processing map dynamic recrystallization
下载PDF
Effects of heat treatment on microstructure and microhardness of linear friction welded dissimilar Ti alloys 被引量:6
13
作者 张传臣 张田仓 +1 位作者 季亚娟 黄继华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3540-3544,共5页
A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicate... A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicated that the peak temperature exceeded theβ-transus temperature at the weld interface during linear friction welding. TC4 side was mainly composed of martensiteα′phase with random distribution and it was singleβfor that of TC17. In the thermomechanically affected zones of TC4 and TC17, the structure undergoes severe plastic deformation and re-orientation, yet without altering the phase fractions. After PWHT, in the weld zone of TC4 alloy, the phase transformationα′→α+βoccurred and the acicularαwas coarsened, which resulted in a decrease in hardness. In the weld zone of TC17 alloy, fineαphase precipitated at the grain boundary and withinβgrains, which resulted in a sharp increase in hardness. 展开更多
关键词 linear friction welding ti alloys heat treatments MICROSTRUCTURE MICROHARDNESS
下载PDF
Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process 被引量:6
14
作者 陈永楠 魏建锋 +1 位作者 赵永庆 郑晶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1018-1022,共5页
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr... Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution. 展开更多
关键词 titanium alloy ti14 alloy SEMI-SOLID microstructure grain growth index
下载PDF
Corrosion behavior of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications in Ringer's solution 被引量:3
15
作者 许艳飞 肖逸锋 +3 位作者 易丹青 刘会群 吴靓 文璟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2556-2563,共8页
The corrosion resistance of Ti?25Nb?10Ta?1Zr?0.2Fe (mass fraction, %) (TNTZF) alloy in Ringer’s solution at 37 °C was investigated by potentiodynamic polarization measurement. Ti?6Al?4V ELI (Extra low... The corrosion resistance of Ti?25Nb?10Ta?1Zr?0.2Fe (mass fraction, %) (TNTZF) alloy in Ringer’s solution at 37 °C was investigated by potentiodynamic polarization measurement. Ti?6Al?4V ELI (Extra low interstitial) alloy was also investigated to make a comparison. The results show that TNTZF alloy has higher corrosion potential, lower corrosion current density, more stable passive current density and wider passive region compared with Ti–6Al–4V ELI alloy, which indicates that TNTZF alloy has better corrosion resistance. In addition, pitting corrosion is observed on the surface passive film of Ti–6Al–4V ELI alloy but is not found on that of TNTZF alloy. The XPS analysis results reveal that the passive film formed on TNTZF alloy is composed of Nb2O5, NbO2, Ta2O5, ZrO2, TiO and Ti2O3oxides in the matrix of TiO2, which makes the passive film more stable and protective than that formed on Ti?6Al?4V ELI alloy and contributes much to its superior corrosion resistance. 展开更多
关键词 ti alloy BIOMATERIALS corrosion behavior passive film
下载PDF
Effects of stabilizing heat treatment on microstructures and creep behavior of Zn-10Al-2Cu-0.02Ti alloy 被引量:3
16
作者 林高用 张锐 +2 位作者 王莉 雷玉霞 贺家健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期86-91,共6页
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti... The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment. 展开更多
关键词 Zn-10Al-2Cu-0.02ti alloy stabilizing heat treatment microstructure creep behavior
下载PDF
Constructing processing map of Ti40 alloy using artificial neural network 被引量:4
17
作者 孙宇 曾卫东 +3 位作者 赵永庆 张学敏 马雄 韩远飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期159-165,共7页
Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was esta... Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations. 展开更多
关键词 ti40 alloy processing map artificial neural network
下载PDF
Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater 被引量:14
18
作者 陈君 张清 +2 位作者 李全安 付三玲 王建章 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1022-1031,共10页
The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between... The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low. 展开更多
关键词 ti6Al4V alloy AISI 316 stainless steel TRIBOCORROSION synergistic effect
下载PDF
Improving in plasticity of orthorhombic Ti_2AlNb-based alloys sheet by high density electropulsing 被引量:6
19
作者 宋辉 王忠金 赫晓东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期32-37,共6页
In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures ... In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures were observed by SEM,and the tensile properties were also studied using uniaxial tension tests.The experimental results show that electropulsing can refine the microstructures of Ti22Al27Nb sheets.The specimen with the fine and homogeneous microstructures has good plasticity,and its elongation reaches 19.4%.The mechanism about the effect of electropulsing treatment on the microstructure of Ti22Al27Nb sheets was discussed.It was thought that the increase in nucleation rate during phase transformation and a very short treating time were regarded as the main reasons of producing smaller grains and increase in the plasticity by electropulsing. 展开更多
关键词 ti2AlNb-based alloys electropulsing treatment PLAStiCITY grain refinement microstructure nucleation rate phase transformation
下载PDF
Influence of electron-beam superposition welding on intermetallic layer of Cu/Ti joint 被引量:2
20
作者 陈国庆 张秉刚 +1 位作者 刘伟 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2416-2420,共5页
QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in c... QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal. 展开更多
关键词 Cu alloy ti alloy electron beam superposition welding IMC-layer
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部