Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In t...Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.展开更多
Because of the high affinity of the same element Ti,cemented carbide tools containing Ti seem to be non⁃optimal in machining titanium alloys.However,in practice,cemented carbide tools containing Ti are still widely us...Because of the high affinity of the same element Ti,cemented carbide tools containing Ti seem to be non⁃optimal in machining titanium alloys.However,in practice,cemented carbide tools containing Ti are still widely used in machining titanium alloys.Cutting experiments were conducted in order to systematically explain the contradictions between the practice and theory.The diffusion process between titanium alloys and the cemented carbide tools was analyzed by auger electron spectroscopy detecting the cutting regions.It was also analyzed by Ti/Co diffusion behavior simulated by molecular thermodynamics.The experimental results and the simulation results showed that the mutual diffusion of Ti/Co atoms was the major reason for the diffusion wear.The dissolution⁃diffusion wear was one of the main wear mechanisms for the cemented carbide tools containing Ti in the coatings.Moreover,four types of cemented carbide tools and two other types of cermet tools were used to machine the Ti⁃6Al⁃4V alloys at different cutting speeds to further verify the high affinity of cutting tools containing Ti in the substrate/coating.The verification experiments results showed that the cemented carbide tools containing Ti generally cannot be used for machining titanium alloys,but could show less affinity in the cutting regions with reasonable cutting conditions.展开更多
Transmission electron microscopy was used to investigate the effect of isothermal holding temperature and time on the nano Ti-precipitates.A holding temperature was varied systematically from 400℃ to 1200℃.The isoth...Transmission electron microscopy was used to investigate the effect of isothermal holding temperature and time on the nano Ti-precipitates.A holding temperature was varied systematically from 400℃ to 1200℃.The isothermal holding was continued for 30s,300s and 900s,respectively.Nano carbides of (Ti,Nb)C were precipitated significantly at 900℃.The size of carbides was approximately 10nm at 30s holding and increased to 20~30nm at 900s holding.Isothermal holding at 1000℃ showed the increased amount of carbides larger than 100nm.At 800℃,nano (Ti,Nb)C was not observed at 30s and it was examined at 300s.The size of nano (Ti,Nb)C was smaller than that of 900℃.As the isothermal temperature decreased to 700 ℃,the nano (Ti,Nb)C was only seen at 900s holding and the size of carbides was smaller than 10nm.Nano (Ti,Nb)C was disappeared at isothermal holding below 600℃.The kinetics of nano (Ti,Nb)C precipitation were studied as a function of isothermal holding temperature and time,respectively,using the precipitate growth equations.展开更多
Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides...Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides,the oxidation behavior of multi-component non-stoichiometric(Zr,Hf,Ti)C_(x)carbide solid solution has not been clarified yet.The present work fabricated four kinds of(Zr,Hf,Ti)C_(x)carbide solid solution powders by free-pressureless spark plasma sintering to investigate the oxidation behavior of(Zr,Hf,Ti)C_(x)in air.The effects of metallic atom composition on oxidation resistance were examined.The results indicate that the oxidation kinetics of(Zr,Hf,Ti)C_(x)are composition dependent.A high Hf content in(Zr,Hf,Ti)C_(x)was beneficial to form an amorphous Zr-Hf-Ti-C-0 oxycarbide layer as an oxygen barrier to enhance the initial oxidation resistance.Meanwhile,an equiatomic ratio of metallic atoms reduced the growth rate of(Zr,Hf,Ti)O_(2)oxide,increasing its phase stability at high temperatures,which improved the oxidation activation energy of(Zr,Hf,Ti)C_(x).展开更多
基金Project supported by Fujian Science&Technology Innovation Laboratory for Energy Devices of China(21C-LAB)(Grant No.21C-OP-202013)the National Natural Science Foundation of China(Grant No.12064027)+1 种基金the International Science and Technology Cooperation Program of China(Grant No.2015DFA61800)the Scientific Research Fund of Jiangxi Provincial Education Department,China(Grant No.GJJ180973).
文摘Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.
基金the National Science and Technology Major Project of China(Grant No.2019ZX04017001).
文摘Because of the high affinity of the same element Ti,cemented carbide tools containing Ti seem to be non⁃optimal in machining titanium alloys.However,in practice,cemented carbide tools containing Ti are still widely used in machining titanium alloys.Cutting experiments were conducted in order to systematically explain the contradictions between the practice and theory.The diffusion process between titanium alloys and the cemented carbide tools was analyzed by auger electron spectroscopy detecting the cutting regions.It was also analyzed by Ti/Co diffusion behavior simulated by molecular thermodynamics.The experimental results and the simulation results showed that the mutual diffusion of Ti/Co atoms was the major reason for the diffusion wear.The dissolution⁃diffusion wear was one of the main wear mechanisms for the cemented carbide tools containing Ti in the coatings.Moreover,four types of cemented carbide tools and two other types of cermet tools were used to machine the Ti⁃6Al⁃4V alloys at different cutting speeds to further verify the high affinity of cutting tools containing Ti in the substrate/coating.The verification experiments results showed that the cemented carbide tools containing Ti generally cannot be used for machining titanium alloys,but could show less affinity in the cutting regions with reasonable cutting conditions.
文摘Transmission electron microscopy was used to investigate the effect of isothermal holding temperature and time on the nano Ti-precipitates.A holding temperature was varied systematically from 400℃ to 1200℃.The isothermal holding was continued for 30s,300s and 900s,respectively.Nano carbides of (Ti,Nb)C were precipitated significantly at 900℃.The size of carbides was approximately 10nm at 30s holding and increased to 20~30nm at 900s holding.Isothermal holding at 1000℃ showed the increased amount of carbides larger than 100nm.At 800℃,nano (Ti,Nb)C was not observed at 30s and it was examined at 300s.The size of nano (Ti,Nb)C was smaller than that of 900℃.As the isothermal temperature decreased to 700 ℃,the nano (Ti,Nb)C was only seen at 900s holding and the size of carbides was smaller than 10nm.Nano (Ti,Nb)C was disappeared at isothermal holding below 600℃.The kinetics of nano (Ti,Nb)C precipitation were studied as a function of isothermal holding temperature and time,respectively,using the precipitate growth equations.
基金supported by the National Natural Science Foundation of China(Nos.51602349 and 5207021797)the Fundamental Research Funds for the Central Universities,the Key Research and Development(R&D)Program in Hunan Province Science and Technology Department(No.2018GK2061)the Innovation-drive Project of Central South University.
文摘Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides,the oxidation behavior of multi-component non-stoichiometric(Zr,Hf,Ti)C_(x)carbide solid solution has not been clarified yet.The present work fabricated four kinds of(Zr,Hf,Ti)C_(x)carbide solid solution powders by free-pressureless spark plasma sintering to investigate the oxidation behavior of(Zr,Hf,Ti)C_(x)in air.The effects of metallic atom composition on oxidation resistance were examined.The results indicate that the oxidation kinetics of(Zr,Hf,Ti)C_(x)are composition dependent.A high Hf content in(Zr,Hf,Ti)C_(x)was beneficial to form an amorphous Zr-Hf-Ti-C-0 oxycarbide layer as an oxygen barrier to enhance the initial oxidation resistance.Meanwhile,an equiatomic ratio of metallic atoms reduced the growth rate of(Zr,Hf,Ti)O_(2)oxide,increasing its phase stability at high temperatures,which improved the oxidation activation energy of(Zr,Hf,Ti)C_(x).