期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
1
作者 Diyou Jiang Wenbo Xiao Sanqiu Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期416-422,共7页
Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In t... Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure. 展开更多
关键词 quaternary carbide ti3NiAl2C ceramics structural properties mechanical properties electronic properties Debye temperature FIRST-PRINCIPLES
下载PDF
Analysis on the Wear Performances of Cemented Carbide Tools Containing Ti in the Coatings When Machining Ti⁃6Al⁃4V Alloys
2
作者 Jianfei Sun Daxi Du +3 位作者 Zixuan Ding Kai Wang Dashan Bai Wuyi Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第6期14-22,共9页
Because of the high affinity of the same element Ti,cemented carbide tools containing Ti seem to be non⁃optimal in machining titanium alloys.However,in practice,cemented carbide tools containing Ti are still widely us... Because of the high affinity of the same element Ti,cemented carbide tools containing Ti seem to be non⁃optimal in machining titanium alloys.However,in practice,cemented carbide tools containing Ti are still widely used in machining titanium alloys.Cutting experiments were conducted in order to systematically explain the contradictions between the practice and theory.The diffusion process between titanium alloys and the cemented carbide tools was analyzed by auger electron spectroscopy detecting the cutting regions.It was also analyzed by Ti/Co diffusion behavior simulated by molecular thermodynamics.The experimental results and the simulation results showed that the mutual diffusion of Ti/Co atoms was the major reason for the diffusion wear.The dissolution⁃diffusion wear was one of the main wear mechanisms for the cemented carbide tools containing Ti in the coatings.Moreover,four types of cemented carbide tools and two other types of cermet tools were used to machine the Ti⁃6Al⁃4V alloys at different cutting speeds to further verify the high affinity of cutting tools containing Ti in the substrate/coating.The verification experiments results showed that the cemented carbide tools containing Ti generally cannot be used for machining titanium alloys,but could show less affinity in the cutting regions with reasonable cutting conditions. 展开更多
关键词 wear mechanisms ti/Co diffusion molecular thermodynamics simulation cemented carbide tool containing ti ti⁃6Al⁃4V alloys
下载PDF
Effect of Isothermal Annealing on Nano Ti-Carbides Precipitation
3
作者 Cheol-ho Park Woo-jin Kim +2 位作者 Nam-hyun Kang Hyung-hyup Do Kyung-Mox Cho 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期287-289,共3页
Transmission electron microscopy was used to investigate the effect of isothermal holding temperature and time on the nano Ti-precipitates.A holding temperature was varied systematically from 400℃ to 1200℃.The isoth... Transmission electron microscopy was used to investigate the effect of isothermal holding temperature and time on the nano Ti-precipitates.A holding temperature was varied systematically from 400℃ to 1200℃.The isothermal holding was continued for 30s,300s and 900s,respectively.Nano carbides of (Ti,Nb)C were precipitated significantly at 900℃.The size of carbides was approximately 10nm at 30s holding and increased to 20~30nm at 900s holding.Isothermal holding at 1000℃ showed the increased amount of carbides larger than 100nm.At 800℃,nano (Ti,Nb)C was not observed at 30s and it was examined at 300s.The size of nano (Ti,Nb)C was smaller than that of 900℃.As the isothermal temperature decreased to 700 ℃,the nano (Ti,Nb)C was only seen at 900s holding and the size of carbides was smaller than 10nm.Nano (Ti,Nb)C was disappeared at isothermal holding below 600℃.The kinetics of nano (Ti,Nb)C precipitation were studied as a function of isothermal holding temperature and time,respectively,using the precipitate growth equations. 展开更多
关键词 ti carbide hot rolled steel hole expansion ratio isothermal holding nano precipitates
原文传递
Oxidation behavior of non-stoichiometric(Zr,Hf,Ti)C_(x) carbide solid solution powders in air 被引量:5
4
作者 Huilin LUN Yi ZENG +5 位作者 Xiang XIONG Ziming YE Zhongwei ZHANG Xingchao LI Haikun CHEN Yufeng LIU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第4期741-757,共17页
Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides... Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides,the oxidation behavior of multi-component non-stoichiometric(Zr,Hf,Ti)C_(x)carbide solid solution has not been clarified yet.The present work fabricated four kinds of(Zr,Hf,Ti)C_(x)carbide solid solution powders by free-pressureless spark plasma sintering to investigate the oxidation behavior of(Zr,Hf,Ti)C_(x)in air.The effects of metallic atom composition on oxidation resistance were examined.The results indicate that the oxidation kinetics of(Zr,Hf,Ti)C_(x)are composition dependent.A high Hf content in(Zr,Hf,Ti)C_(x)was beneficial to form an amorphous Zr-Hf-Ti-C-0 oxycarbide layer as an oxygen barrier to enhance the initial oxidation resistance.Meanwhile,an equiatomic ratio of metallic atoms reduced the growth rate of(Zr,Hf,Ti)O_(2)oxide,increasing its phase stability at high temperatures,which improved the oxidation activation energy of(Zr,Hf,Ti)C_(x). 展开更多
关键词 ultra-high temperature ceramics(UHTCs) (Zr Hf ti)C_(x)carbides oxidation behavior oxidation resistance free-pressureless spark plasma sintering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部