By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results sho...By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results show that the microstructure is refined after modification with Ti,which is related to the heterogeneous nucleation of TiAl_(3) particles on theα-Al matrix.With the increase of Ti content and holding time after stirring,the primary Mg_(2)Si phase is refined firstly and then coarsened,and correspondingly,the mechanical properties of the alloy show a trend of increasing at first and then decreasing.When the addition of Ti is 0.5wt.%and the holding time is about 20 min,the refinement effect of primary Mg_(2)Si phase is the most significant and the mechanical properties of the alloy are optimal.展开更多
A near eutectic Al−12.6Si alloy was developed with 0.0wt%,2.0wt%,4.0wt%,and 6.0wt%Al−5Ti−1B master alloy.The micro-structural morphology,hardness,tensile strength,elongation,and fracture behaviour of the alloys were s...A near eutectic Al−12.6Si alloy was developed with 0.0wt%,2.0wt%,4.0wt%,and 6.0wt%Al−5Ti−1B master alloy.The micro-structural morphology,hardness,tensile strength,elongation,and fracture behaviour of the alloys were studied.The unmodified Al−12.6Si al-loy has an irregular needle and plate-like eutectic silicon(ESi)and coarse polygonal primary silicon(PSi)particles in the matrix-likeα-Al phase.The P_(Si),E_(Si),andα-Al morphology and volume fraction were changed due to the addition of the Al−5Ti−1B master alloy.The hardness,UTS,and elongation improved due to the microstructural modification.Nano-sized in-situ Al3Ti particles and ex-situ TiB_(2)particles caused the mi-crostructural modification.The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time.The Al−5Ti−1B modified alloys have a more ductile mode of fracture and more dimples compared to the unmodified alloy.展开更多
In this paper, the process of photocatalytic reduction of hexavalent chromium was investigated over Ti3+- modified TiO2 photocatalysts. The Ti3+ surface defects were repaired by annealing as-prepared sample at diffe...In this paper, the process of photocatalytic reduction of hexavalent chromium was investigated over Ti3+- modified TiO2 photocatalysts. The Ti3+ surface defects were repaired by annealing as-prepared sample at different temperatures to control the amount of Ti3+ sites. The samples were characterized by SEM, XRD, BET, UV-Vis absorption, EPR and XPS. The results showed Ti3+ defects were successfully doped in TiO2. The surface selective adsorption of hexavalent chromium [Cr2072 (Cr(VI))] and the desorption of trivalent chromium [Cr3+ (Cr(III))] were investigated during the process ofphotocatalytic reduction positive charges due to more Ti3+ defects on the surface show a Accordingly, the surface positive reduction of Cr(VI). charges controlled by the Ti3+ Zeta potential results presented that the increased significant improvement for adsorption of Cr(VI). defects play important roles in the photocatalytic展开更多
基金financially supported by the Science and Technology Development Program of Shouguang(No.2019JH14)the Science and Technology Development Program of Weifang(No.2021GX052)the Natural Science Foundation of Liaoning Province(No.080137)。
文摘By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results show that the microstructure is refined after modification with Ti,which is related to the heterogeneous nucleation of TiAl_(3) particles on theα-Al matrix.With the increase of Ti content and holding time after stirring,the primary Mg_(2)Si phase is refined firstly and then coarsened,and correspondingly,the mechanical properties of the alloy show a trend of increasing at first and then decreasing.When the addition of Ti is 0.5wt.%and the holding time is about 20 min,the refinement effect of primary Mg_(2)Si phase is the most significant and the mechanical properties of the alloy are optimal.
基金The authors would also like to thank NIT,Durgapur RIG#2 project for financial support and the Director of National In-stitute of Technology Durgapur,India,for his continuous en-couragement.
文摘A near eutectic Al−12.6Si alloy was developed with 0.0wt%,2.0wt%,4.0wt%,and 6.0wt%Al−5Ti−1B master alloy.The micro-structural morphology,hardness,tensile strength,elongation,and fracture behaviour of the alloys were studied.The unmodified Al−12.6Si al-loy has an irregular needle and plate-like eutectic silicon(ESi)and coarse polygonal primary silicon(PSi)particles in the matrix-likeα-Al phase.The P_(Si),E_(Si),andα-Al morphology and volume fraction were changed due to the addition of the Al−5Ti−1B master alloy.The hardness,UTS,and elongation improved due to the microstructural modification.Nano-sized in-situ Al3Ti particles and ex-situ TiB_(2)particles caused the mi-crostructural modification.The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time.The Al−5Ti−1B modified alloys have a more ductile mode of fracture and more dimples compared to the unmodified alloy.
文摘In this paper, the process of photocatalytic reduction of hexavalent chromium was investigated over Ti3+- modified TiO2 photocatalysts. The Ti3+ surface defects were repaired by annealing as-prepared sample at different temperatures to control the amount of Ti3+ sites. The samples were characterized by SEM, XRD, BET, UV-Vis absorption, EPR and XPS. The results showed Ti3+ defects were successfully doped in TiO2. The surface selective adsorption of hexavalent chromium [Cr2072 (Cr(VI))] and the desorption of trivalent chromium [Cr3+ (Cr(III))] were investigated during the process ofphotocatalytic reduction positive charges due to more Ti3+ defects on the surface show a Accordingly, the surface positive reduction of Cr(VI). charges controlled by the Ti3+ Zeta potential results presented that the increased significant improvement for adsorption of Cr(VI). defects play important roles in the photocatalytic