A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The charac...A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The characteristics of the Ti:sapphire l^ser operating in a positive dispersion regime are presented, where the oscillator directly generates pulses with duration continuously tunable from 0.37 ps to 2.11 ps, and 36 fs pulses are achieved atter extracavity compression. The oscillation is numerically simulated with an extended nonlinear Schr6dinger equation, and the simulation results are in good agreement with the experimental results.展开更多
This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source...This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.展开更多
We studied the evolution of wavefront aberration(WFA) of a signal beam during amplification in a Ti:sapphire chirped pulse amplification(CPA) system. The results verified that the WFA of the amplified laser beam has l...We studied the evolution of wavefront aberration(WFA) of a signal beam during amplification in a Ti:sapphire chirped pulse amplification(CPA) system. The results verified that the WFA of the amplified laser beam has little relation with the change of the pump beam energies. Transverse parasitic lasing that might occur in CPA hardly affects the wavefront of the signal beam. Thermal effects were also considered in this study, and the results show that the thermal effect cumulated in multiple amplification processes also has no obvious influence on the wavefront of the signal beam for a single-shot frequency. The results presented in this paper confirmed experimentally that the amplification in a Ti:sapphire CPA system has little impact on the WFA of the signal beam and it is very helpful for wavefront correction of single-shot PW and multi-PW laser systems based on Ti:sapphire.展开更多
A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtai...A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.展开更多
We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses a...We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses as short as 17 fs are generated at a central wavelength of 736 nm with an average output power of 31 mW.The maximum output power is 46.8 mW at a central wavelength of 797 nm with a pulse duration of 46 fs.展开更多
We demonstrate a 100-TW-class femtosecond Ti:sapphire laser running at a repetition rate of 0.1Hz based on a 20TW/10 Hz laser facility (XL-Ⅱ).Pumping the new stage amplifier with a 25J green Nd:glass laser,we success...We demonstrate a 100-TW-class femtosecond Ti:sapphire laser running at a repetition rate of 0.1Hz based on a 20TW/10 Hz laser facility (XL-Ⅱ).Pumping the new stage amplifier with a 25J green Nd:glass laser,we successfully improve the laser energy to 3.4J with duration of 29 fs,corresponding to a peak power of 11 7 TW.展开更多
The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one- dimensional (1D) and two-dimensional (2D) Frantz-Nodvik equations. The simulation indicates that th...The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one- dimensional (1D) and two-dimensional (2D) Frantz-Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system.展开更多
We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump....We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump.Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH-absorption at 1380 nm.展开更多
As short as 8.5 fs pulses have been generated from a home made self-start self-mode-locking Ti: sap-phire laser. With higher Ti dopped, shorter laser rod, lower third order group velocity dispersion prism pair, and la...As short as 8.5 fs pulses have been generated from a home made self-start self-mode-locking Ti: sap-phire laser. With higher Ti dopped, shorter laser rod, lower third order group velocity dispersion prism pair, and larger gain modulation operation condition, the laser possesses the potential of generating sub-10 femtosecond.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806002)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z447)+3 种基金National Natural Science Foundation of China (Grant Nos. 60678012 and 60838004)the Foundation for Key Program of Ministry of Education, China (Grant No. 108032)FANEDD(Grant No. 2007B34)NCET (Grant No. NCET-07-0597)
文摘A Kerr-lens mode-locked Ti:sapphire laser operating in a non-soliton regime is demonstrated. Dispersive wave generation is observed as a result of third order dispersion in the vicinity of zero dispersion. The characteristics of the Ti:sapphire l^ser operating in a positive dispersion regime are presented, where the oscillator directly generates pulses with duration continuously tunable from 0.37 ps to 2.11 ps, and 36 fs pulses are achieved atter extracavity compression. The oscillation is numerically simulated with an extended nonlinear Schr6dinger equation, and the simulation results are in good agreement with the experimental results.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10474071, 60637010, 60671036 and 60278001) and Tianjin Applied Fundamental Research Project, China (07JCZDJC05900).
文摘This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.
基金Project supported by the National Natural Science Foundation of China(Grant No.61775223)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB1603)
文摘We studied the evolution of wavefront aberration(WFA) of a signal beam during amplification in a Ti:sapphire chirped pulse amplification(CPA) system. The results verified that the WFA of the amplified laser beam has little relation with the change of the pump beam energies. Transverse parasitic lasing that might occur in CPA hardly affects the wavefront of the signal beam. Thermal effects were also considered in this study, and the results show that the thermal effect cumulated in multiple amplification processes also has no obvious influence on the wavefront of the signal beam for a single-shot frequency. The results presented in this paper confirmed experimentally that the amplification in a Ti:sapphire CPA system has little impact on the WFA of the signal beam and it is very helpful for wavefront correction of single-shot PW and multi-PW laser systems based on Ti:sapphire.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61275157 and 61475040the National Key Scientific Instrument and Equipment Development,Project under Grant No 2012YQ120048+1 种基金the National Development Project for Major Scientific Research Facility under Grant No ZDYZ2012-2the National Key Research and Development Program of China under Grant No 2016YFB0402003
文摘A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0402105)
文摘We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses as short as 17 fs are generated at a central wavelength of 736 nm with an average output power of 31 mW.The maximum output power is 46.8 mW at a central wavelength of 797 nm with a pulse duration of 46 fs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074298,91126008,10804128 and 10925421the National Basic Research Program of China under Grant No 2007CB815104the Instrument Developing Project of Chinese Academy of Sciences under Grant No 2010004.
文摘We demonstrate a 100-TW-class femtosecond Ti:sapphire laser running at a repetition rate of 0.1Hz based on a 20TW/10 Hz laser facility (XL-Ⅱ).Pumping the new stage amplifier with a 25J green Nd:glass laser,we successfully improve the laser energy to 3.4J with duration of 29 fs,corresponding to a peak power of 11 7 TW.
基金Project supported by 100 Talents Program of Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.61475169,61521093,and 11127901)the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one- dimensional (1D) and two-dimensional (2D) Frantz-Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system.
基金Supported by the National Natural Science Foundation of China under Grant No 61735011the Natural Science Foundation of Hebei Province under Grant Nos F2016203389 and F2018105036+2 种基金the Science and Technology Research Project of College and University in Hebei Province under Grant No BJ2017108the Open Subject of Jiangsu Key Laboratory of Meteorological Observation and Information Processing under Grant No KDXS1107the Science and Technology Project of Tangshan City under Grant No 17130257a
文摘We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump.Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH-absorption at 1380 nm.
文摘As short as 8.5 fs pulses have been generated from a home made self-start self-mode-locking Ti: sap-phire laser. With higher Ti dopped, shorter laser rod, lower third order group velocity dispersion prism pair, and larger gain modulation operation condition, the laser possesses the potential of generating sub-10 femtosecond.