期刊文献+
共找到696篇文章
< 1 2 35 >
每页显示 20 50 100
In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes
1
作者 Jing Sun Qinping Jian +2 位作者 Bin Liu Pengzhu Lin Tianshou Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期158-166,共9页
Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrain... Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrained by critical challenges,including dendrites,water-induced hydrogen evolution,and passivation.In this study,a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method.The ultrathin interphase layer(~1μm)is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1Å,which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions,contributing to a uniform and highly reversible zinc deposition.With the shielding of the interphase layer,an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and~700 h at 1 mA cm^(−2),far exceeding that of the bare zinc anodes(250 and 70 h).Furthermore,as a proof-of-concept demonstration,the full cell paired with MnO_(2) cathode demonstrates improved rate performances and stable cycling(1200 cycles at 1 A g−1).This work provides fresh insights into interphase design to promote the performance of zinc metal anodes. 展开更多
关键词 2D MOF DESOLVATION INTERPHASE ion sieve zinc anode
下载PDF
Polypyrrole-coated triple-layer yolk-shell Fe_(2)O_(3)anode materials with their superior overall performance in lithium-ion batteries
2
作者 Zhen He Jiaming Liu +5 位作者 Yuqian Wei Yunfei Song Wuxin Yang Aobo Yang Yuxin Wang Bo Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2737-2748,共12页
Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast... Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields. 展开更多
关键词 Fe_(2)O_(3) structure design anode material lithium-ion battery
下载PDF
Enhanced Li storage of pure crystalline-C_(60) and TiNb_(2)O_(7)-nanostructure composite for Li-ion battery anodes
3
作者 Injun Jeon Linghong Yin +5 位作者 Dingcheng Yang Hong Chen Seong Won Go Min Seung Kang Hyung Soo Ahn Chae-Ryong Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期478-485,I0010,共9页
We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed b... We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials. 展开更多
关键词 Li-ion battery anode material TiNb_(2)O_(7) nanofiber FULLERENE Electrochemical performance
下载PDF
Synergistic effect of carbon nanotube and encapsulated carbon layer enabling high-performance SnS_2-based anode for lithium storage
4
作者 Chunwei Dong Yongjin Xia +7 位作者 Zhijiang Su Zhihua Han Yang Dong Jingyun Chen Fei Hao Qiyao Yu Qing Jiang Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期700-709,I0015,共11页
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug... Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs. 展开更多
关键词 Lithium-ion batteries Porous amorphous carbon Carbon nanotubes SnS_(2)-based anode Density functional theory calculations
下载PDF
Plasma Surface Modification of Li_(2)TiSiO_(5) Anode for Lithium-Ion Batteries
5
作者 Shangqi Sun Lingchao Xiao +1 位作者 Qifeng Qian Yunfeng Deng 《Energy Engineering》 EI 2024年第10期2769-2776,共8页
Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5) is synthesized by the sol-gelmethod,and the s... Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5) is synthesized by the sol-gelmethod,and the surface modification of Li_(2)TiSiO_(5) is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance.The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration.The peak position of the plasma-treated Li_(2)TiSiO_(5) is shifted to a lower angle,and the shift angle increases with increasing sputtering power.Li_(2)TiSiO_(5) after 300 W bombardment shows excellent capacity(144.7 mA·hg^(−1)after 500 cycles at 0.1 Ag^(−1))and rate performance(140 mA·hg^(−1)at 5 Ag^(−1)).Electrochemical analysis indicates that excellent electrochemical performance is attributed to the enhancement of electronic and ionic conductivity by plasma bombardment. 展开更多
关键词 PLASMA Li_(2)TiSiO_(5) surface modification anode
下载PDF
Insights into Formation and Li-Storage Mechanisms of Hierarchical Accordion-Shape Orthorhombic CuNb_(2)O_(6) toward Lithium-Ion Capacitors as an Anode-Active Material
6
作者 Chao Cheng Yunsheng Yan +3 位作者 Minyu Jia Yang Liu Linrui Hou Changzhou Yuan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期287-298,共12页
The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and c... The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and controversial charge-storage mechanism always limit its applications.Herein,we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb_(2)CT_(x)as the niobium source.The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb_(2)O_(6)to O-CNO is tentatively put forward.Furthermore,the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex)situ characterizations.Thanks to its unique structural merits and lithium-storage process,the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g^(-1)at 2.0 A g^(-1),along with long-duration cycling behaviors.Furthermore,the constructed O-CNO-based LICs exhibit a high energy(138.9 Wh kg^(-1))and power(4.0 kW kg^(-1))densities with a modest cycling stability(15.8%capacity degradation after 3000 consecutive cycles).More meaningfully,the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs. 展开更多
关键词 high-rate anodes lithium-ion capacitors lithium-storage mechanisms orthorhombic CuNb_(2)O_(6) phase transform
下载PDF
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
7
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) anode material Sodium-ion battery Full cell
下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
8
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
Solid-state NMR study on sodium intercalation at low voltage window for Na_(3)V_(2)(PO_(4))_(3) as an anode
9
作者 Yuxin Liao Fushan Geng +1 位作者 Ming Shen Bingwen Hu 《Magnetic Resonance Letters》 2024年第2期40-45,共6页
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_... In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site. 展开更多
关键词 Na_(3)V_(2)(PO_(4))_(3) anode Low voltage NMR Sodium ion battery
下载PDF
Surface Patterning of Metal Zinc Electrode with an In‑Region Zincophilic Interface for High‑Rate and Long‑Cycle‑Life Zinc Metal Anode 被引量:1
10
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova‑Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期192-209,共18页
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im... The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs. 展开更多
关键词 Zn metal anode Surface patterning Directional Zn deposition Aqueous Zn-I_(2)batteries
下载PDF
Synergistic enhancement of cathode/anode interfaces with high water-retentive organohydrogel enabling highly stable zinc ion batteries
11
作者 Xixi Zhang Qingxiu Yu +8 位作者 Guangmeng Qu Xiaoke Wang Chuanlin Li Chenggang Wang Na Li Jinzhao Huang Cuiping Han Hongfei Li Xijin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期670-679,共10页
Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern... Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices. 展开更多
关键词 Enhanced water-retentive Organohydrogel electrolyte Stable Zn||MnO+2 batteries Enhancement of cathode/anode interfaces
下载PDF
Dual-function protective layer for highly reversible Zn anode
12
作者 Jiaming Li Hanhao Liang +6 位作者 Yini Long Xiao Yu Jiaqi Li Nan Li Junyi Han Jianglin Wang Zhanhong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期12-23,共12页
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based... The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries. 展开更多
关键词 Protection layer Zn-Al-In layered double oxide Captures and anchors SO_(4)^(2-) Zn-In alloy phase Zn metal anode
下载PDF
2D Materials Boost Advanced Zn Anodes:Principles,Advances,and Challenges 被引量:1
13
作者 Songhe Zheng Wanyu Zhao +3 位作者 Jianping Chen Xiaoli Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期1-22,共22页
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea... Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed. 展开更多
关键词 Zinc-ion battery Large-scale energy storage application Zn anode LIFESPAN 2D materials
下载PDF
Boosting Zn^(2+)kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes 被引量:1
14
作者 Bin Luo Yang Wang +5 位作者 Leilei Sun Sinan Zheng Guosheng Duan Zhean Bao Zhizhen Ye Jingyun Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期632-641,I0016,共11页
Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages... Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages.However,AZIBs still suffer from serious problems such as dendrites Zn,hydrogen evolution corrosion,and surface passivation,which hinder the further commercial application of AZIBs.Herein,an in-situ ZnCr_(2)O_(4)(ZCO)interface endows AZIBs with dendrite-free and ultra-low polarization by realizing Zn^(2+)pre-desolvation,constraining H2O-induced corrosio n,and boosting Zn^(2+)transport/deposition kinetics.The ZCO@Zn anode harvests an ultrahigh cumulative capacity of~20000 mA h cm^(-2)(cycle time:over 4000 h)at a high current density of 10 mA cm^(-2),indicating excellent reversibility of Zn deposition,Such superior performance is among the best cyclability in AZIBs.Moreover,the multifunctional ZCO interface improves the Coulombic efficiency(CE)to 99.7%for more than 2600 cycles.The outstanding electrochemical performance is also verified by the long-term cycle stability of ZCO@Zn//α-MnO_(2) full cells.Notably,the as-proposed method is efficient and low-cost enough to enable mass production.This work provides new insights into the uniform Zn electrodeposition at the scale of interfacial Zn^(2+)predesolvation and kinetics improvement. 展开更多
关键词 Zinc ion battery Dendrite-free Zn anode In-situ reaction Pre-desolvation Zn^(2+)kinetics
下载PDF
Enabling High-Performance Sodium Battery Anodes by Complete Reduction of Graphene Oxide and Cooperative In-Situ Crystallization of Ultrafine SnO_(2)Nanocrystals 被引量:2
15
作者 Junwu Sang Kangli Liu +4 位作者 Xiangdan Zhang Shijie Zhang Guoqin Cao Yonglong Shen Guosheng Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期356-365,共10页
The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed a... The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs. 展开更多
关键词 in situ compositing microwave reduced graphene oxide sodium ion battery sodium ion battery anode ultrafine SnO_(2)nanocrystals
下载PDF
Rational design of stretchable and conductive hydrogel binder for highly reversible SiP2 anode
16
作者 Xuhao Liu Runzhe Yao +7 位作者 Siqi Wang Yaqing Wei Bin Chen Wei Liang Caiyun Tian Chengyu Nie De Li Yong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期564-573,I0013,共11页
The emerging SiP2with large capacity and suitable plateau is proposed to be the alternative anode for Li-ion batteries.However,typical SiP2still suffers from serious volume expansion and structural destruction,resulti... The emerging SiP2with large capacity and suitable plateau is proposed to be the alternative anode for Li-ion batteries.However,typical SiP2still suffers from serious volume expansion and structural destruction,resulting in much Li-consumption and capacity fading.Herein,a novel stretchable and conductive Li-PAA@PEDOT:PSS binder is rationally designed to improve the cyclability and reversibility of SiP2.Interestingly,such Li-PAA@PEDOT:PSS hydrogel enables a better accommodation of volume expansion than PVDF binder(e.g.5.94% vs.68.73% of expansivity).More specially,the SiP2electrode with LiPAA@PEDOT:PSS binder is surprisingly found to enable unexpected structural recombination and selfhealing Li-storage processes,endowing itself with a high initial Coulombic efficiency(ICE) up to 93.8%,much higher than PVDF binder(ICE=70.7%) as well.Such unusual phenomena are investigated in detail for Li-PAA@PEDOT:PSS,and the possible mechanism shows that its Li-PAA component enables to prevent the pulverization of SiP2nanoparticles while the PEDOT:PSS greatly bridges fast electronic connection for the whole electrode.Consequently,after being further composited with carbon matrix,the SiP2/C with LiPAA@PEDOT:PSS hydrogel exhibits high reversibility(ICE> 93%),superior cyclability(>450 cycles),and rate capability(1520 mAh/g at 2000 mA/g) for LIBs.This highly stretchable and conductive binder design can be easily extended to other alloying materials toward advanced energy storage. 展开更多
关键词 SiP_(2) BINDER Initial Coulombic efficiency anode material Lithium ion batteries
下载PDF
Effect of sintering atmosphere on corrosion resistance of Ni/(NiFe_2O_4-10NiO) cermet inert anode for aluminum electrolysis 被引量:3
17
作者 田忠良 郭伟昌 +2 位作者 赖延清 张凯 李劼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2925-2929,共5页
A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rate... A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material. 展开更多
关键词 sintering atmosphere corrosion resistance NiFe2O4-based cermet inert anode aluminum electrolysis
下载PDF
Corrosion of NiFe_2O_4-10NiO-based cermet inert anodes for aluminium electrolysis 被引量:3
18
作者 何汉兵 王原 +1 位作者 龙佳驹 陈照辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3816-3821,共6页
NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance... NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance during electrolysis in molten salt cryolite at 960 °C, but according to the analyses of phase compositions and microstructures through XRD, SEM/EDX and metallographic analysis, the metal in the anodes is preferentially corroded and many pores are produced on the anode surface after electrolysis. The preferential dissolution of Fe in the NiFe2O4 phase may lead to the non-uniform corrosion of NiFe2O4 grains. Moreover, a dense protective layer of NiFe2O4-NiAl2O4-FeAl2O4 is formed on the anode surface, which originates from the reaction of Al2O3 dissolved in the electrolyte with NiO or FeO, the annexation of NiFe2O4-NiAl2O4-FeAl2O4 to NiO and volume expansion. Thus, the dense NiFe2O4-NiAl2O4-FeAl2O4 layer inhibits the metal loss and ceramic-phase corrosion on the surface of the cermet inert anodes. 展开更多
关键词 NIFE2O4-10NIO aluminium electrolysis inert anode CERMET CORROSION
下载PDF
SnO_2-based gas(hydrogen) anodes for aluminum electrolysis 被引量:3
19
作者 肖赛君 Tommy MOKKELBOST +2 位作者 Ove PAULSEN Arne P.RATVIK Geir M.HAARBERG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3917-3921,共5页
A novel SnO2-based gas anode was developed for aluminum electrolysis in molten cryolite at 850 &#176;C to reduce energy consumption and decrease CO2 emissions. Hydrogen was introduced into the anode, participating in... A novel SnO2-based gas anode was developed for aluminum electrolysis in molten cryolite at 850 &#176;C to reduce energy consumption and decrease CO2 emissions. Hydrogen was introduced into the anode, participating in the anode reaction. Carbon and aluminum were used as the cathode and reference electrodes, respectively. Cyclic voltammetry was applied in the cell to investigate the electrochemical behavior of oxygen ion on platinum and SnO2-based materials. The potential for oxygen evolution on these electrode materials was determined. Then, galvanostatic electrolysis was performed on the gas anode, showing a significant depolarization effect (a decrease of ~0.8 V of the anode potential) after the introduction of hydrogen, compared with no gas introduction or the introduction of argon. The results indicate the involvement of hydrogen in the anode reaction (three-phase-boundary reaction including gas, electrolyte and electrode) and give the possibility for the utilization of reducing gas anodes for aluminum electrolysis. 展开更多
关键词 SnO2-based gas anode hydrogen anode aluminum electrolysis
下载PDF
Sb_(2)S_(3)/石墨烯负极材料的制备及其储钠性能研究
20
作者 王旭 杨观华 +2 位作者 李翼宏 张志国 张杰 《广西科技大学学报》 CAS 2024年第1期106-112,共7页
钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量... 钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量高被认为是较好的钠离子电池负极材料。本文使用简单水热法将Sb_(2)S_(3)与石墨烯复合,制备Sb_(2)S_(3)/石墨烯复合材料(Sb_(2)S_(3)/Gr)。结果表明:Sb_(2)S_(3)/Gr作为钠离子电池负极时,不仅表现出良好的电导率(3.5×10~(-3)S/cm)和钠离子扩散速率(4.853×10~(-13)cm~2/s),而且在0.5 A/g的电流密度下,首圈库伦效率为76.27%,经150次循环后的比容量稳定在488 m A·h/g,表现出较高的比容量。Sb_(2)S_(3)/Gr复合材料表现出了极大的应用潜力,为高性能钠离子电池负极材料的研发提供了一定的参考价值。 展开更多
关键词 钠离子电池 硫化锑(Sb_(2)S_(3)) 石墨烯 负极材料
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部