The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as ...The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.展开更多
Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied ...Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.展开更多
基金Project (09003) supported by the Open-Fund Research of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,ChinaProject (JD0805) supported by the Science and Technology Innovation Team,Jiangsu University,China
文摘The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.
基金Projects(51371145,51431003,U1435201,51401166)supported by the National Natural Science Foundation of ChinaProject(B080401)supported by the Programme of Introducing Talents of Discipline to Universities,China
文摘Zr-Y jointly modified silicide coatings were prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy by pack cementation process. The wear behaviors of both the base alloy and coatings were comparatively studied at room temperature and 800 ℃ using SiC balls as the counterpart. The Zr-Y jointly modified silicide coating is mainly composed of a thick (Nb,X)Si2 outer layer and a thin (Ti,Nb)5Si4 inner layer. The coatings possess much higher microhardness than the base alloy. The wear rates of both the base alloy and coatings increase with increasing the sliding loads. However, the coatings have much lower wear rates than the base alloy under the same sliding conditions. The coatings have superior anti-friction property, and can provide effective protection for the base alloy at both room temperature and 800 ℃ in air.