Lead dioxide electrodes on Ti substrates were prepared by thermal-deposition or electro-deposition. The amount of hydroxyl radicals generated at the electrodes prepared by the above-mentioned two methods was compared ...Lead dioxide electrodes on Ti substrates were prepared by thermal-deposition or electro-deposition. The amount of hydroxyl radicals generated at the electrodes prepared by the above-mentioned two methods was compared with that at the electrodes mingled with Bi or La prepared by electro-deposition. The experimental results indicate that the highest concentration of hydroxyl radicals generated by thermal-deposition, electro-deposition mingled with nothing, electro-deposition mingled with Bi or La was 0.781, 1.048, 1.838 or 2.044 μmol/L, respectively. When phenol was electrolyzed on the four electrodes at a current density of 30 mA/cm2, the removal efficiency of phenol after electrolysis for 1.5 h was 87.30%, 93.55%, 97.95% or 98.70%, TOC removal efficiency after electrolysis for 5 h was 86.76%, 94.26%, 98.53% or 99.60%, respectively. Through the degradation experiments of phenol, the amount of hydroxyl radicals was responsible for the removal efficiency of phenol. The electro-catalytic characteristics were investigated by SEM, the generation amount of hydroxyl radicals, the degradation degree of phenol and the stability and conductivity of the electrodes were also investigated. The experimental results indicate that the four electrodes all show good electro-catalytic characteristics; the electro-catalytic characteristics of the electrode mingled with La were superior to those of the other three ones, and the electrochemical degradation of phenol followed one-step reaction dynamics.展开更多
Titanium dioxide(Ti O_(2))nanopowder(P-25;Degussa AG)was treated using dielectric barrier discharge(DBD)in a rotary electrode DBD(RE-DBD)reactor.Its electrical and optical characteristics were investigated during RE-D...Titanium dioxide(Ti O_(2))nanopowder(P-25;Degussa AG)was treated using dielectric barrier discharge(DBD)in a rotary electrode DBD(RE-DBD)reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO_(2)nanopowder properties and structures were analyzed using x-ray diffraction(XRD)and Fourier-transform infrared spectroscopy(FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3°to 25.1°,which can be attributed to the substitution of new functional groups in the TiO_(2)lattice.The FTIR results show that hydroxyl groups(OH)at 3400 cm-1 increased considerably.The mechanism used to modify the TiO_(2)nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO_(2)nanopowder surface.展开更多
The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped c...The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.展开更多
In order to investigate the effect of solid particles dopants on physicochemical properties of α-PbO2 electrodes, a-PbO2 composite electrodes doped with nano-TiO2 and nano-CeO2 particles were respectively prepared on...In order to investigate the effect of solid particles dopants on physicochemical properties of α-PbO2 electrodes, a-PbO2 composite electrodes doped with nano-TiO2 and nano-CeO2 particles were respectively prepared on A1/conductive coating electrodes in 4 mol/L NaOH solution with addition of PbO until saturation by anodic codeposition. The electrodeposition mechanism, morphology, composition and structure of the composite electrodes were characterized by cyclic voltarnmogram (CV), SEM, EDAX and XRD. Results show that the doping solid particles can not change reaction mechanism of α-PbO2 electrode in alkaline or acid plating bath, but can improve deposition rate and reduce oxygen evolution potential. The doping solid particles can inhibit the growth of a-PbO2 unit cell and improve specific surface area. The diffraction peak intensity of a-PbO2-CeO2-TiO2 composite electrode is lower than that of pure a-PbO2 electrode. The electrocatalytic activity of a-PbO2-2.12%CEO2-3.71%TIO2 composite electrode is the best. The Guglielmi model for CeO2 and TiO2 codeposition with a-PbO2 is also pronosed.展开更多
PbO2/Co3O4 composites were prepared on a Ti substrate by means of a composite electrodeposition method in Pb2+ plating solution containing dissolved nano-Co3O4 particles. X-ray diffraction(XRD), scanning electron mi...PbO2/Co3O4 composites were prepared on a Ti substrate by means of a composite electrodeposition method in Pb2+ plating solution containing dissolved nano-Co3O4 particles. X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and transmission electron microscopy(TEM) were used to characterize the chemical composition and morphology of the PbO2/Co3O4 composites. The electrochemical and capacitance performance of the composites were investigated by cyclic voltammetry(CV), charge-discharge tests and electrochemical impedance(EIS). The results indicate that the composites comprise rutile phase Co3O4 and β-PbO2. In addition, the surface of the composite electrode is rough and porous. The PbO2/Co3O4 composites exhibit a high specific capacitance up to 215 F/g, which is ten times higher than that of the pure-PbO2 and two times higher than that of the pure-Co3O4 in 1 mol/L NaOH electrolytes.展开更多
Unveiling the active site of an electrocatalyst is fundamental for the development of efficient electrode material.For the two-electron water oxidation to produce H_(2)O_(2),competitive reactions,including four-and on...Unveiling the active site of an electrocatalyst is fundamental for the development of efficient electrode material.For the two-electron water oxidation to produce H_(2)O_(2),competitive reactions,including four-and one-electron water oxidation and surface reconstruction derived from the high-oxidative environment co-existed,leading to great challenges to identify the real active sites on the electrode.In this work,Ti/TiO_(2)-based electrodes calcined under air,nitrogen,or urea atmospheres were selected as electrocatalysts for two-electron water oxidation.Electrochemical analyses were applied to evaluate the catalytic activity and selectivity.The morphological and current change on the electrode surface were determined by scanning electrochemical microscopy,while the chemical and valence evolutions with depth distributions were tested by XPS combined with cluster argon ion sputtering.The results demonstrated that Ti/TiO_(2) nanotube arrays served as the support,while the functional groups of carbonyl groups and pyrrolic nitrogen derived from the co-pyrolysis with urea were the active sites for the H_(2)O_(2) production.This finding provided a new horizon to design efficient catalysts for H_(2)O_(2) production.展开更多
A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstr...A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1 100 °C;whereas,the surface Mn content increases and reaches the maximum at 1 000 °C and then decreases thereafter.Lower surface Mn content is beneficial for the enhanced corrosion resistance and lowered open cell voltage in electrolytic process.The new anode prepared under the optimized conditions has been applied in industry and exhibits superior economic benefits to conventional Ti anodic materials.展开更多
Elucidation the relationship between electrode potentials and heterogeneous electrocatalytic reactions has attracted widespread attention.Herein we construct the well-defined Mn single-atom(MnSA)catalyst with four N-c...Elucidation the relationship between electrode potentials and heterogeneous electrocatalytic reactions has attracted widespread attention.Herein we construct the well-defined Mn single-atom(MnSA)catalyst with four N-coordination through a simple thermal pyrolysis preparation method to investigate the electrode potential micro-environments effect on carbon dioxide reduction reactions(CO_(2)RR)and oxygen reduction reactions(ORR).MnSA catalysts generate higher CO production Faradaic efficiency of exceeding 90%at-0.9 V for CO_(2)RR and higher H_(2)O_(2)yield from 0.1 to 0.6 V with excellent ORR activity.Density functional theory(DFT)calculations based on constant potential models were performed to study the mechanism of MnSA on CO_(2)RR.The thermodynamic energy barrier of CO_(2)RR is lowest at-0.9 V vs.reversible hydrogen electrode(RHE).Similar DFT calculations on the H_(2)O_(2)yield of ORR showed that the H_(2)O_(2)yield at 0.2 V was higher.This study provides a reasonable explanation for the role of electrode potential micro-environments.展开更多
In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect...In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.展开更多
The electrochemical carbon dioxide(CO_(2))reduction provides a means to upgrade CO_(2)into value-added chemicals.When powered by renewable electric-ity,CO_(2)electroreduction holds the promise of chemical manufacturin...The electrochemical carbon dioxide(CO_(2))reduction provides a means to upgrade CO_(2)into value-added chemicals.When powered by renewable electric-ity,CO_(2)electroreduction holds the promise of chemical manufacturing with carbon neutrality.A commercially relevant CO_(2)electroreduction process should be highly selective and productive toward desired products,energetically efficient for power conversion,and stable for long-term operation.To achieve these goals,designing gas-diffusion catalytic electrodes and prototyping reactors built upon in-depth understandings of the reaction mechanisms are of para-mount importance.In this review,the fundamentals of gas-diffusion electrodes are briefly presented.Then,the most recent advances in developing high-performance CO_(2)reduction using gas-diffusion electrodes are overviewed.Reactor engineering aiming at enhancing productivity,energy efficiency,CO_(2)single-pass utilization,and operating lifetime is further discussed.Challenges in developing CO_(2)electroreduction systems are included.The prospects for advancing CO_(2)electroreduction toward practical applications are also narrated.展开更多
Fading mechanism of tin dioxide (SnO2) electrodes in lithium ion batteries has attracted much attentions, which is of great importance for the battery applications. In this paper, electrochemical lithiation-delithia...Fading mechanism of tin dioxide (SnO2) electrodes in lithium ion batteries has attracted much attentions, which is of great importance for the battery applications. In this paper, electrochemical lithiation-delithiation cycles of individual SnO2 nanowires were conducted in situ in a high-resolution transmission electron microscopy (TEM). Major changes in volume with expan- sions of 170%~300% on SnO2 nanowire electrodes were observed during the first lithiation process in electrochemical cycling, including conversion reaction of SnO2 precursor to Li20 matrix and active lithium host Sn, and alloying of Sn with Li to form brittle Li-Sn alloy. SnO2 nanowire electrodes were inclined to suffer from thermal runaway condition in the first two cycles. During cycling, morphology and composition evolution of SnO2 nanowire electrodes were recorded. Cyclic lithiation and del- ithiation of the electrode demonstrated the phase transition between Lii3Sn5 and Sn. Metallic Sn clusters were formed and their sizes enlarged with increasing cycle times. Detrimental aggregation of Sn clusters caused pulverization in SnO2 nanowire elec- trodes, which broke the conduction and transport path for electrons and lithium ions. The real-time in situ TEM revealed fading mechanism provides important guidelines for the viable design of the SnO2 nanowire electrodes in lithium ion batteries.展开更多
Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulation...Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulations is designed using nanostructured working electrodes.Surface functionalization with manganese dioxide(MnO_(2))/fullerene-C_(60) nanocomposite exhibited the highest electrochemical responses with a sharp oxidation peak at about 336 mV that was obtained using the differential pulse voltammetry(DPV).The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)were applied,while the electrode matrix composition including types of nanomaterials,electroanalytical parameters,and pH eff ect were optimized.To that end,using the DPV,high sensitivity was obtained from the linear calibration curve ranged from 0.8 to 31.5μg·mL^(-1) with the correlation coe fficient of 0.99,limit of detection of 0.76μg·mL^(-1) and limit of quantification of 2.31μg·mL^(-1) .Accordingly,the designed approach is off ering a potential applicability towards the RFX determination in pharmaceutical preparations and its quality control.展开更多
Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single prod...Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored.展开更多
基金the Environment Bureau of Jilin Province, China(No.2006-11)Scientific Institute of Changchun City(No. 2007KZ15)985 Project of Jilin University
文摘Lead dioxide electrodes on Ti substrates were prepared by thermal-deposition or electro-deposition. The amount of hydroxyl radicals generated at the electrodes prepared by the above-mentioned two methods was compared with that at the electrodes mingled with Bi or La prepared by electro-deposition. The experimental results indicate that the highest concentration of hydroxyl radicals generated by thermal-deposition, electro-deposition mingled with nothing, electro-deposition mingled with Bi or La was 0.781, 1.048, 1.838 or 2.044 μmol/L, respectively. When phenol was electrolyzed on the four electrodes at a current density of 30 mA/cm2, the removal efficiency of phenol after electrolysis for 1.5 h was 87.30%, 93.55%, 97.95% or 98.70%, TOC removal efficiency after electrolysis for 5 h was 86.76%, 94.26%, 98.53% or 99.60%, respectively. Through the degradation experiments of phenol, the amount of hydroxyl radicals was responsible for the removal efficiency of phenol. The electro-catalytic characteristics were investigated by SEM, the generation amount of hydroxyl radicals, the degradation degree of phenol and the stability and conductivity of the electrodes were also investigated. The experimental results indicate that the four electrodes all show good electro-catalytic characteristics; the electro-catalytic characteristics of the electrode mingled with La were superior to those of the other three ones, and the electrochemical degradation of phenol followed one-step reaction dynamics.
文摘Titanium dioxide(Ti O_(2))nanopowder(P-25;Degussa AG)was treated using dielectric barrier discharge(DBD)in a rotary electrode DBD(RE-DBD)reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO_(2)nanopowder properties and structures were analyzed using x-ray diffraction(XRD)and Fourier-transform infrared spectroscopy(FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3°to 25.1°,which can be attributed to the substitution of new functional groups in the TiO_(2)lattice.The FTIR results show that hydroxyl groups(OH)at 3400 cm-1 increased considerably.The mechanism used to modify the TiO_(2)nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO_(2)nanopowder surface.
基金Grant PID2020-115848RB-C21 "STORELEC" projectTED2021-129694B-C22 "DEFY-CO2" project funded by MCIN/AEI/10.13039/501100011033+3 种基金LMP253_ (2)1 project funded by Gobierno de AragónGrant IJC2019-041874-I funded by the MCIN/AEI/10.13039/501100011033CSIC for her JAE Intro ICU 2021-ICB-04 grantthe Y2020/EMT-6419 "CEOTRES" project funded by the Comunidad Autonoma de Madrid。
文摘The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.
基金Project(51004056) supported by the National Natural Science Foundation of ChinaProject(KKZ6201152009) supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences+2 种基金Project(2010ZC052) supported by the Applied Basic Research Foundation of Yunnan Province,ChinaProject(20125314110011) supported by the Specialized Research Fund for the Doctoral Program of Higher EducationProject(2010247) supported by Analysis & Testing Foundation of Kunming University of Science and Technology,China
文摘In order to investigate the effect of solid particles dopants on physicochemical properties of α-PbO2 electrodes, a-PbO2 composite electrodes doped with nano-TiO2 and nano-CeO2 particles were respectively prepared on A1/conductive coating electrodes in 4 mol/L NaOH solution with addition of PbO until saturation by anodic codeposition. The electrodeposition mechanism, morphology, composition and structure of the composite electrodes were characterized by cyclic voltarnmogram (CV), SEM, EDAX and XRD. Results show that the doping solid particles can not change reaction mechanism of α-PbO2 electrode in alkaline or acid plating bath, but can improve deposition rate and reduce oxygen evolution potential. The doping solid particles can inhibit the growth of a-PbO2 unit cell and improve specific surface area. The diffraction peak intensity of a-PbO2-CeO2-TiO2 composite electrode is lower than that of pure a-PbO2 electrode. The electrocatalytic activity of a-PbO2-2.12%CEO2-3.71%TIO2 composite electrode is the best. The Guglielmi model for CeO2 and TiO2 codeposition with a-PbO2 is also pronosed.
基金Supported by the National Natural Science Foundation of China(No.51502117,No.21671084)Key Research&Development Plan of Zhenjiang City(No.SH2017051)+1 种基金Foundation from Marine Equipment and Technology Institute for Jiangsu University of Science and Technology(No.HZ20170015)Six Talent Peaks Project in Jiangsu Province(No.2014-XCL-008)
文摘PbO2/Co3O4 composites were prepared on a Ti substrate by means of a composite electrodeposition method in Pb2+ plating solution containing dissolved nano-Co3O4 particles. X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and transmission electron microscopy(TEM) were used to characterize the chemical composition and morphology of the PbO2/Co3O4 composites. The electrochemical and capacitance performance of the composites were investigated by cyclic voltammetry(CV), charge-discharge tests and electrochemical impedance(EIS). The results indicate that the composites comprise rutile phase Co3O4 and β-PbO2. In addition, the surface of the composite electrode is rough and porous. The PbO2/Co3O4 composites exhibit a high specific capacitance up to 215 F/g, which is ten times higher than that of the pure-PbO2 and two times higher than that of the pure-Co3O4 in 1 mol/L NaOH electrolytes.
基金Project(2021JJ30792) supported by the Natural Science Foundation of Hunan Province,ChinaProject(52170031) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China。
文摘Unveiling the active site of an electrocatalyst is fundamental for the development of efficient electrode material.For the two-electron water oxidation to produce H_(2)O_(2),competitive reactions,including four-and one-electron water oxidation and surface reconstruction derived from the high-oxidative environment co-existed,leading to great challenges to identify the real active sites on the electrode.In this work,Ti/TiO_(2)-based electrodes calcined under air,nitrogen,or urea atmospheres were selected as electrocatalysts for two-electron water oxidation.Electrochemical analyses were applied to evaluate the catalytic activity and selectivity.The morphological and current change on the electrode surface were determined by scanning electrochemical microscopy,while the chemical and valence evolutions with depth distributions were tested by XPS combined with cluster argon ion sputtering.The results demonstrated that Ti/TiO_(2) nanotube arrays served as the support,while the functional groups of carbonyl groups and pyrrolic nitrogen derived from the co-pyrolysis with urea were the active sites for the H_(2)O_(2) production.This finding provided a new horizon to design efficient catalysts for H_(2)O_(2) production.
基金Projects(20476106,50721003 and 20636020) supported by the National Natural Science Foundation of ChinaProject(50825102) supported by the National Natural Science Funds for Distinguished Young Scholar of China+1 种基金Project(2006AA03Z511) supported by the National High Technology Research and Development Program of ChinaProject supported by the 111 Program of Chinese Ministry of Education
文摘A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1 100 °C;whereas,the surface Mn content increases and reaches the maximum at 1 000 °C and then decreases thereafter.Lower surface Mn content is beneficial for the enhanced corrosion resistance and lowered open cell voltage in electrolytic process.The new anode prepared under the optimized conditions has been applied in industry and exhibits superior economic benefits to conventional Ti anodic materials.
基金supported by the National Natural Science Foundation of China(Nos.52073214 and 22075211)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008).
文摘Elucidation the relationship between electrode potentials and heterogeneous electrocatalytic reactions has attracted widespread attention.Herein we construct the well-defined Mn single-atom(MnSA)catalyst with four N-coordination through a simple thermal pyrolysis preparation method to investigate the electrode potential micro-environments effect on carbon dioxide reduction reactions(CO_(2)RR)and oxygen reduction reactions(ORR).MnSA catalysts generate higher CO production Faradaic efficiency of exceeding 90%at-0.9 V for CO_(2)RR and higher H_(2)O_(2)yield from 0.1 to 0.6 V with excellent ORR activity.Density functional theory(DFT)calculations based on constant potential models were performed to study the mechanism of MnSA on CO_(2)RR.The thermodynamic energy barrier of CO_(2)RR is lowest at-0.9 V vs.reversible hydrogen electrode(RHE).Similar DFT calculations on the H_(2)O_(2)yield of ORR showed that the H_(2)O_(2)yield at 0.2 V was higher.This study provides a reasonable explanation for the role of electrode potential micro-environments.
文摘In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.
基金Joint International Research Laboratory of Carbon-Based Functional Materials and Devices111 Project+1 种基金Collaborative Innovation Center of Suzhou Nano Science and TechnologyMinistry of Science and Technology,Grant/Award Number:2017YFA0204800。
文摘The electrochemical carbon dioxide(CO_(2))reduction provides a means to upgrade CO_(2)into value-added chemicals.When powered by renewable electric-ity,CO_(2)electroreduction holds the promise of chemical manufacturing with carbon neutrality.A commercially relevant CO_(2)electroreduction process should be highly selective and productive toward desired products,energetically efficient for power conversion,and stable for long-term operation.To achieve these goals,designing gas-diffusion catalytic electrodes and prototyping reactors built upon in-depth understandings of the reaction mechanisms are of para-mount importance.In this review,the fundamentals of gas-diffusion electrodes are briefly presented.Then,the most recent advances in developing high-performance CO_(2)reduction using gas-diffusion electrodes are overviewed.Reactor engineering aiming at enhancing productivity,energy efficiency,CO_(2)single-pass utilization,and operating lifetime is further discussed.Challenges in developing CO_(2)electroreduction systems are included.The prospects for advancing CO_(2)electroreduction toward practical applications are also narrated.
基金supported by the National Basic Research Program of China("973" project)(Grant Nos.2012CB933003,2013CB932601)the National Natural Science Foundation of China(Grant No.11027402)
文摘Fading mechanism of tin dioxide (SnO2) electrodes in lithium ion batteries has attracted much attentions, which is of great importance for the battery applications. In this paper, electrochemical lithiation-delithiation cycles of individual SnO2 nanowires were conducted in situ in a high-resolution transmission electron microscopy (TEM). Major changes in volume with expan- sions of 170%~300% on SnO2 nanowire electrodes were observed during the first lithiation process in electrochemical cycling, including conversion reaction of SnO2 precursor to Li20 matrix and active lithium host Sn, and alloying of Sn with Li to form brittle Li-Sn alloy. SnO2 nanowire electrodes were inclined to suffer from thermal runaway condition in the first two cycles. During cycling, morphology and composition evolution of SnO2 nanowire electrodes were recorded. Cyclic lithiation and del- ithiation of the electrode demonstrated the phase transition between Lii3Sn5 and Sn. Metallic Sn clusters were formed and their sizes enlarged with increasing cycle times. Detrimental aggregation of Sn clusters caused pulverization in SnO2 nanowire elec- trodes, which broke the conduction and transport path for electrons and lithium ions. The real-time in situ TEM revealed fading mechanism provides important guidelines for the viable design of the SnO2 nanowire electrodes in lithium ion batteries.
基金the great gratitude to the project fund received from the National Research Centre(NRC,Cairo,Egypt)for the internal grant(No.11090306)。
文摘Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulations is designed using nanostructured working electrodes.Surface functionalization with manganese dioxide(MnO_(2))/fullerene-C_(60) nanocomposite exhibited the highest electrochemical responses with a sharp oxidation peak at about 336 mV that was obtained using the differential pulse voltammetry(DPV).The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)were applied,while the electrode matrix composition including types of nanomaterials,electroanalytical parameters,and pH eff ect were optimized.To that end,using the DPV,high sensitivity was obtained from the linear calibration curve ranged from 0.8 to 31.5μg·mL^(-1) with the correlation coe fficient of 0.99,limit of detection of 0.76μg·mL^(-1) and limit of quantification of 2.31μg·mL^(-1) .Accordingly,the designed approach is off ering a potential applicability towards the RFX determination in pharmaceutical preparations and its quality control.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government MSIT(2021R1A2C2093358,2021R1A4A3027878,2022M3I3A1081901)financial support from the Lotte Chemical Company。
文摘Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored.