期刊文献+
共找到2,014篇文章
< 1 2 101 >
每页显示 20 50 100
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
1
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
Exceptional Performance of 3D Additive Manufactured NiFe Phosphite Oxyhydroxide Hollow Tubular Lattice Plastic Electrode for Large-Current-Density Water Oxidization
2
作者 Liping Ding Lin Zhang +7 位作者 Gaoyuan Li Shuyan Chen Han Yan Haibiao Tu Jianmin Su Qi Li Yanfeng Tang Yanqing Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期262-273,共12页
In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic ... In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes. 展开更多
关键词 3D plastic electrode 3D printing induced chemical deposition largecurrent-density water oxidization NiFe phosphite oxyhydroxide
下载PDF
The effects of inner electrode shape on the performance of dielectric barrier discharge reactor for oxidative removal of NO and SO_(2)
3
作者 蔡云凯 黄兵锋 +1 位作者 董飞 祝能 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期177-186,共10页
Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with w... Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with wet scrubbing technology is considered to be a promising technology.In order to improve the oxidation efficiency and energy efficiency of the NTP reactor,the screw and rod inner electrodes of dielectric barrier discharge(DBD)reactor were investigated.To analyze the mechanism,the optical emission spectra(OES)of NTP were measured and numerical calculation was applied.The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode.However,the SO_(2)removal efficiency of screw electrode is higher.According to the OES experiment and numerical calculation,the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface,and it is easier to generate N radicals to form NO.For the same energy density condition,the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode,but the gas temperature in the discharge gap is higher.Therefore,the SO2 oxidation efficiency of the thread electrode is higher.This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor. 展开更多
关键词 electrodE DIELECTRIC oxidATIVE
下载PDF
Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells 被引量:2
4
作者 Wan Nor Anasuhah Wan Yusoff Nurul Akidah Baharuddin +3 位作者 Mahendra Rao Somalu Andanastuti Muchtar Nigel P.Brandon Huiqing Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1933-1956,共24页
This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review... This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers. 展开更多
关键词 nano composites electrodE microstructure tailoring oxidATION symmetrical solid oxide fuel cell
下载PDF
Langmuir-Blodgett assembly of ultra-large graphene oxide films for transparent electrodes 被引量:1
5
作者 郑庆彬 师丽芳 杨俊和 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2504-2511,共8页
Monolayer ultra-large graphene oxide (UL-GO) sheets with diameter up to about 100 μm were synthesized based on a chemical method. Transparent conductive films were produced using the UL-GO sheets that were deposite... Monolayer ultra-large graphene oxide (UL-GO) sheets with diameter up to about 100 μm were synthesized based on a chemical method. Transparent conductive films were produced using the UL-GO sheets that were deposited layer-by-layer on a substrate by the Langmuir-Blodgett (L-B) assembly technique. The films produced from UL-GO sheets with a close-packed flat structure exhibit exceptionally high electrical conductivity and transparency after thermal reduction. A remarkable sheet resistance of 605 -/sq at 86% transparency is obtained, which outperforms the graphene films grown on a Ni substrate by chemical vapor deposition. The technique used to produce transparent conductive films is facile, inexpensive and tunable for mass production. 展开更多
关键词 graphene oxide Langmuir-Blodgett assembly transparent electrode thermal reduction
下载PDF
TUNGSTEN ELECTRODES CONTAINING THREE TYPES OF RARE EARTH OXIDES 被引量:5
6
作者 Nie, Zuoren Zhou, Meiling +3 位作者 Chen, Ying Fan, Xiaowu Zhang, Jiuxing Zuo, Tieyong 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期38-41,共4页
INTRODUCTIONWithincreasingdemandstothepropertyofweldingelectrodeandbeterknowledgeofThWelectrodematerial’sra... INTRODUCTIONWithincreasingdemandstothepropertyofweldingelectrodeandbeterknowledgeofThWelectrodematerial’sradioactivity,somes... 展开更多
关键词 RARE EARTH oxideS TUNGSTEN electrode welding RIM Y 2O 3+La 2O 3+CeO 2
下载PDF
Effects of flaky rare earth oxide additives on the high temperature performance of nickel electrodes 被引量:3
7
作者 方庆 成艳 +4 位作者 简旭宇 朱磊 蔚海军 王忠 蒋利军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期72-78,共7页
Effects of flaky rare earth oxide additives including Er2O3,Tm2O3,and Yb2O3,Lu2O3 on high temperature and high rate discharge performance of nickel electrodes were investigated.The discharge efficiency at 0.2C reached... Effects of flaky rare earth oxide additives including Er2O3,Tm2O3,and Yb2O3,Lu2O3 on high temperature and high rate discharge performance of nickel electrodes were investigated.The discharge efficiency at 0.2C reached 96% at 60 oC for electrodes with 1 at.% flaky rare earth oxides.The high rate discharge performance for electrodes with flaky rare earth oxides were improved significantly,for example,discharge efficiency at 5C improved from 50% to 70%.The results showed that the end charging potential of the ... 展开更多
关键词 flaky rare earth oxides high temperature performance cyclic voltammograms nickel electrodes nickel-metal hydride batteries rare earths
下载PDF
A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60 被引量:3
8
作者 Elsa Maria Materon Ademar Wong +2 位作者 Tayane Aguiar Freitas Ronaldo Censi Faria Osvaldo N.Oliveira Jr. 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第5期646-652,共7页
Monitoring the concentration of antibiotics in body fluids is essential to optimizing the therapy and minimizing the risk of bacteria resistance,which can be made with electrochemical sensors tailored with appropriate... Monitoring the concentration of antibiotics in body fluids is essential to optimizing the therapy and minimizing the risk of bacteria resistance,which can be made with electrochemical sensors tailored with appropriate materials.In this paper,we report on sensors made with screen-printed electrodes(SPE)coated with fullerene(C60),reduced graphene oxide(rGO)and Nafion(NF)(C60-rGO-NF/SPE)to determine the antibiotic metronidazole(MTZ).Under optimized conditions,the C60-rGO-NF/SPE sensor exhibited a linear response in square wave voltammetry for MTZ concentrations from 2.5×10^(-7) to 34×10^(-6) mol/L,with a detection limit of 2.1×10^(-7) mol/L.This sensor was also capable of detecting MTZ in serum and urine,with recovery between 94%and 100%,which are similar to those of the standard chromatographic method(HPLC-UV).Because the C60-rGO-NF/SPE sensor is amenable to mass production and allows for MTZ determination with simple principles of detection,it fulfills the requirements of therapeutic drug monitoring programs. 展开更多
关键词 METRONIDAZOLE FULLERENE Reduced graphene oxide Screen-printed electrodes Antibiotic
下载PDF
Preparation and application of perovskite-type oxides for electrocatalysis in oxygen/air electrodes 被引量:1
9
作者 ZHUANG Shu-xin HE Jia-yi +4 位作者 ZHANG Wei-peng ZHOU Nan LU Mi LIAN Ji-qiong SUN Jing-jing 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1387-1401,共15页
Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this... Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this review.Various fabrication methods of these oxides are introduced in detail,and their advantages and disadvantages are analyzed.Different preparation methods adopted have great influence on the morphologies and physicochemical properties of perovskite-type oxides.As a bifunctional electrocatalyst,perovskite-type oxides are widely used in rechargeable metal-air batteries.The relationship between the preparation methods and the performances of oxygen/air electrodes are summarized.This work is concentrated on the structural stability,the phase compositions,and catalytic performance of perovskite-type oxides in oxygen/air electrodes.The main problems existing in the practical application of perovskite-type oxides as bifunctional electrocatalysts are pointed out and possible research directions in the future are recommended. 展开更多
关键词 perovskite-type oxides ELECTROCATALYSTS PREPARATION oxygen/air electrodes
下载PDF
Electro-catalytic oxidation of phenol with Ti-base lead dioxide electrode 被引量:1
10
作者 王东田 魏杰 +1 位作者 于秀娟 杨红 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期19-23,共5页
The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition... The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition of PbO 2 at a higher current density for a short time, then followed by a lower current density can get a compact and combinative PbO 2 layer. The properties of a Ti/PbO 2 electrode with an interlayer of oxide are the best. When this kind of electrode is used to treat phenol containing waste water, the phenol removal rate is higher and the slot voltage is lower. In addition, by using the phenol removal rate as an index, the influences of electrolysis current density, mass transfer condition and pH were studied and the optimal condition was confirmed. 展开更多
关键词 electro catalysis Ti base oxide electrode PHENOL
下载PDF
Radio-frequency magnetron sputtered thin-film La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ) perovskite electrodes for intermediate temperature symmetric solid oxide fuel cell(IT-SSOFC) 被引量:1
11
作者 Vicky Dhongde Aditya Singh +3 位作者 Jyotsana Kal Uzma Anjum M.Ali Haider Suddhasatwa Basu 《Materials Reports(Energy)》 2022年第2期75-85,共11页
The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCN... The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCNO electrodes were prepared to study the oxygen reduction reaction at intermediate temperature.The Rietveld refinement of syn-thesized material shows a hexagonal structure with the R-3c space group of the prepared perovskite material.Lattice parameter and fractional coordinates were utilized to calculate the oxygen ion diffusion coefficient for molecular dynamic simulation.At 973 K,the oxygen ion diffusion of LSCNO was 1.407×10^(-8)cm^(2)s^(-1) higher by order of one magnitude than that of the La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(7.751×10^(-9)cm^(2)^(-1)).The results suggest that the Nb doping provide the structural stability which improves oxygen anion diffusion.The enhanced structural stability was analysed by the thermal expansion coefficient calculated experimentally and from molecular dynamics simulations.Furthermore,the density functional theory calculation revealed the role of Nb dopant for oxygen vacancy formation energy at Sr-0 and La-O planes is lower than the undoped structure.To understand the rate-limiting process for sluggish oxygen diffusion kinetics,80 nm and 40 nm thin films were fabricated using radio frequency magnetron sputtering on gadolinium doped ceria electrolyte substrate.The impedance was observed to increase with an increasing thickness,suggesting the bulk diffusion as a rate-limiting step for oxygen ion diffu-sion.The electrochemical performance was analysed for the thin-flm symmetric solid oxide fuel cell,which achieved a peak power density of 390 mW cm^(-2) at 1.02 V in the presence of H_(2) fuel on the anode side and air on the cathode side. 展开更多
关键词 Symmetric solid oxide fuel cell Thin-film electrode Diffusion coefficient Molecular dynamics Radio-frequency magnetron sputtering Intermediate temperature
下载PDF
Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering:Recent progress and future perspectives 被引量:4
12
作者 Junxian Pan Yongjian Ye +4 位作者 Mengzhen Zhou Xiang Sun Yihan Ling Keiji Yashiro Yan Chen 《Materials Reports(Energy)》 2021年第2期35-47,共13页
Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely... Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely used fuel electrode materials for SOCs due to the low price and high activity.However,when hydrocarbon fuels are employed,nickel-based electrodes face serious carbon deposition challenges,leading to a rapid decline of cell performance.Great efforts have been devoted to understanding the occurrence of the coking reaction,and to improving the stability of the electrodes in hydrocarbon fuels.In this review,we summarize recent research progress of utilizing surface modification to improve the stability and activity of Ni-based electrodes for SOCs by preventing carbon coking.The review starts with a briefly introduction about the reaction mechanism of carbon deposition,followed by listing several surface modification technologies and their working principles.Then we introduce representative works using surface modification strategies to prevent carbon coking on Ni-based electrodes.Finally,we highlight future direction of improving electrode catalytic activity and anti-coking performance through surface engineering. 展开更多
关键词 Solid oxide cells Ni-based electrodes Carbon coking Surface engineering
下载PDF
La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes as anodes in LaGaO_(3)-based direct carbon solid oxide fuel cells 被引量:2
13
作者 CHEN Tian-yu XIE Yong-min +7 位作者 LU Zhi-bin WANG Liang CHEN Zhe-qin ZHONG Xiao-cong LIU Jia-ming WANG Rui-xiang XU Zhi-feng OUYANG Shao-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1788-1798,共11页
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for... Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs. 展开更多
关键词 direct carbon solid oxide fuel cells anode material La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes Ni nanoparticles
下载PDF
Progress on direct assembly approach for in situ fabrication of electrodes of reversible solid oxide cells 被引量:1
14
作者 Na Ai Yuanfeng Zou +2 位作者 Zhiyi Chen Kongfa Chen San Ping Jiang 《Materials Reports(Energy)》 2021年第2期61-69,共9页
Reversible solid oxide cells(SOCs)are very efficient and clean for storage and regeneration of renewable electrical energy by switching between electrolysis and fuel cell modes.One of the most critical factors governi... Reversible solid oxide cells(SOCs)are very efficient and clean for storage and regeneration of renewable electrical energy by switching between electrolysis and fuel cell modes.One of the most critical factors governing the efficiency and durability of SOCs technology is the stability of the interface between oxygen electrode and electrolyte,which is conventionally formed by sintering at a high temperature of~1000–1250℃,and which suffers from delamination problem,particularly for reversibly operated SOCs.On the other hand,our recent studies have shown that the electrode/electrolyte interface can be in situ formed by a direct assembly approach under the electrochemical polarization conditions at 800℃and lower.The direct assembly approach provides opportunities for significantly simplifying the cell fabrication procedures without the doped ceria barrier layer,enabling the utilization of a variety of high-performance oxygen electrode materials on barrier layer–free yttria-stabilized zirconia(YSZ)electrolyte.Most importantly,the in situ polarization induced interface shows a promising potential as highly active and durable interface for reversible SOCs.The objective of this progress report is to take an overview of the origin and research progress of in situ fabrication of oxygen electrodes based on the direct assembly approach.The prospect of direct assembly approach in the development of effective SOCs and in the fundamental studies of electrode/electrolyte interface reactions is discussed. 展开更多
关键词 Reversible solid oxide cell Direct assembly Oxygen electrode Hydrogen electrode Polarization induced interface electrode/electrolyte interface stability
下载PDF
PHOTOSPLITTING OF WATEM AT THIN FILM IRON OXIDE ELECTRODES
15
作者 Zheng Yu Zhou Li Fu JIANG Department of Chemistry,Qufu Normal University,Qufu,Shandong,273165Jian Zhou ZHANG Department of Chemistry,Hangzhou Teachers University,Hangzou,Zhejiang,310012 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第4期371-372,共2页
both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of th... both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of the Fe_2O_3 thin film were opti- mized to have maximum photoresponse.The effect of iodine doping on photoresponse of iron oxide was investigated. 展开更多
关键词 AT PHOTOSPLITTING OF WATEM AT THIN FILM IRON oxide electrodes
下载PDF
Enhanced Electrochemical and Physical Properties of Ag/AgCl Planar Reference Electrodesin Potentiometric Sensors by Graphite Oxide Layer
16
作者 Tung Son Vinh Nguyen Tien Minh Huynh +1 位作者 Tin Chanh Duc Doan Chien Mau Dang 《材料科学与工程(中英文A版)》 2019年第2期83-90,共8页
The most common reference electrode (RE) which is used in electrochemical measurements is the Ag/AgCl electrode. In this study, we present a novel solid-state Ag/AgCl planar electrode that was coated with a thin layer... The most common reference electrode (RE) which is used in electrochemical measurements is the Ag/AgCl electrode. In this study, we present a novel solid-state Ag/AgCl planar electrode that was coated with a thin layer of Graphite Oxide (GO) as a protective layer. The Ag/AgCl planar electrode was fabricated by using the photolithography and lift-off method combined with the Ag[NH3]2Cl complex. The GO was produced by Hummer’s method and was deposited on top of the Ag/AgCl layer by drop-casting method. The layers of the fabricated reference electrode were characterized by micro Raman spectroscopy, Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The responding time of the planar electrode was short and the signal was more stable in comparison to the plainAg/AgCl electrode. The Open Circuit Potential (OCP) measurement with the fabricated electrode as the RE and the platinum electrode as the working electrode in electrolyte solutions which had various pH values was performed with a linear response in pH ranges from pH 5 to pH 8 and the linear correlation coefficient (R^2 = 0.9899). Moreover, the coating of the GO layers also enhanced the durability of the modified electrode. The results showed that the modified Ag/AgCl electrode with a thin layer GO as the protective layer could be used as plana REs for the potentiometric sensors. 展开更多
关键词 GRAPHITE oxide POTENTIOMETRIC sensor Ag/AgCl reference electrodE
下载PDF
Performance of positive and negative electrodes in amorphous manganese oxide supercapacitor
17
作者 张莹 刘开宇 +1 位作者 张伟 苏耿 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期1014-1017,共4页
Using potassium permanganate and acetic manganese as the reactants,amorphous manganese oxide was prepared with mechanochemical method. XRD was used for microstructure characterization,while cyclic voltammetry and cons... Using potassium permanganate and acetic manganese as the reactants,amorphous manganese oxide was prepared with mechanochemical method. XRD was used for microstructure characterization,while cyclic voltammetry and constant current charge-discharge were used for electrochemical performance testing. The positive electrode(PE) and negative electrode(NE) were investigated respectively in amorphous manganese oxide supercapacitor,aiming to find their different performances in charging-discharging. The results show that the crystalline structure is destroyed in both the PE and NE material during charge-discharge process. Thereinto,the NE suffers a bit more seriously. When cycling,the PE potential scope diminishes while the NE potential scope enlarges. The increased inner resistance makes the NE curves almost bended to be a right angle,but not the PE curves. The cell's equivalent series resistance(ESR) is more dependent on the NE,and the capacitance is mainly determined by the rapid descent of the NE potential range. The capacitances of the NE are highly rate-dependent,decreasing from 121.3 to 53.1 F/g,by 56.2%,over the range of 5-25 mV/s. However,the PE appears to be weakly dependent and its capacitance is only dropped by 22.1%. 展开更多
关键词 无定形氧化锰超导体 虚拟电容器 阳极 阴极
下载PDF
Synthesis of ZnO: AI: F Thin Films by Sol-Gel Process: Applications as Transparent Electrodes, and for Detecting Carbon Monoxide
18
作者 Salvador Tirado Guerra 《材料科学与工程(中英文B版)》 2011年第3期288-295,共8页
关键词 氧化锌薄膜 AI 透明电极 凝胶工艺 一氧化碳 溶胶 应用 ZNO
下载PDF
Study on Methanol Oxidation at Pt and PtRu Electrodes by Combining in situ Infrared Spectroscopy and Differential Electrochemical Mass Spectrometry 被引量:1
19
作者 陶骞 陈微 +2 位作者 姚瑶 Ammar Bin Yousaf 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期541-547,I0003,共8页
Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been ... Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided. 展开更多
关键词 Differential electrochemical mass spectrometry Electrochemical in situ infrared spectroscopy Methanol oxidation PtRu electrode Current efficiency
下载PDF
Research progress on vanadium oxides for potassium-ion batteries 被引量:3
20
作者 Yuhan Wu Guangbo Chen +6 位作者 Xiaonan Wu Lin Li Jinyu Yue Yinyan Guan Juan Hou Fanian Shi Jiyan Liang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期46-59,共14页
Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium ox... Potassium-ion batteries(PIBs)have been considered as promising candidates in the post-lithium-ion battery era.Till now,a large number of materials have been used as electrode materials for PIBs,among which vanadium oxides exhibit great potentiality.Vanadium oxides can provide multiple electron transfers during electrochemical reactions because vanadium possesses a variety of oxidation states.Meanwhile,their relatively low cost and superior material,structural,and physicochemical properties endow them with strong competitiveness.Although some inspiring research results have been achieved,many issues and challenges remain to be further addressed.Herein,we systematically summarize the research progress of vanadium oxides for PIBs.Then,feasible improvement strategies for the material properties and electrochemical performance are introduced.Finally,the existing challenges and perspectives are discussed with a view to promoting the development of vanadium oxides and accelerating their practical applications. 展开更多
关键词 potassium-ion batteries vanadium oxides electrode materials electrochemical performance improvement strategies
下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部