Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ...Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.展开更多
ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The p...ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.展开更多
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface...Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.展开更多
The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two import...The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two important growth parameters,i, e. temperature and pressure, are investigated in detail. Due to the large lattice mismatch between the film and the substrate, ZnO nanocrystals are usually obtained. The growth behavior at the film-substrate interface is found to be strongly dependent on the growth temperature,while the growth pressure determines the shape of the nanostructures as they grow. It is difficult to obtain ZnO films that have good quality and a smooth surface simultaneously. Due to the smaller lattice mismatch,the critical thickness of ZnO on the Al2O3 (1120) surface is found to be much larger than that on the Al2O3 (0001) surface. ZnO/MgZnO quantum wells with graded well thicknesses are grown on the Al2O3 (1120) surfaces,and their optical properties are studied. The built-in electric field in the well layer, generated by the piezoelectric effect, is estimated to be 3 × 10^5 V/cm. It is found that growth at low temperatures and low pressures may facilitate the incorporation of acceptor impurities in ZnO.展开更多
Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties an...Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.展开更多
The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band ...The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.展开更多
Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns reveal...Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.展开更多
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu...ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.展开更多
This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantatio...This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.展开更多
ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respect...ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respectively. The structure and composition of the ZnO films were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The morphology of the samples was studied by scanning electron microscopy (SEM). Measured results show that ZnO films with hexagonal wurtzite structure were grown on Si(111) substrates when annealed in the two ambiences. The volatilization process of ZnO in the ammonia ambience at high temperature was discussed and the mechanism of the reaction was analyzed.展开更多
To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabr...To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.展开更多
This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron spu...This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.展开更多
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ...Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.展开更多
This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as see...This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.展开更多
The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quart...The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).展开更多
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
基金Project (50905178) supported by the National Natural Science Foundation of ChinaProject (2011CB706603) supported by the National Basic Research Program of China
文摘Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.
文摘ZnO films with c -axis parallel to the substrate are reported.ZnO films are synthesized by solid-source chemical vapor deposition,a novel CVD technique,using zinc acetate dihydrate (solid) as the source material.The properties are characterized by X-ray diffraction,atomic force microscopy and transmission spectra.The parallel oriented ZnO films with mixed orientation for (100) and (110) planes are achieved on glass at the substrate temperature of 200℃ and the source temperature of 280℃,and a qualitative explanation is given for the forming of the mixed orientation.AFM images show that the surface is somewhat rough for the parallel oriented ZnO films.The transmission spectrum exhibits a high transmittance of about 85% in the visible region and shows an optical band gap about 3.25eV at room temperature.
文摘Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.
文摘The growth characteristics during metalorganic chemical vapor deposition and optical properties of ZnO films on sapphire (Al2O3) (0001) and (1120) substrates are studied. For the former,the effects of two important growth parameters,i, e. temperature and pressure, are investigated in detail. Due to the large lattice mismatch between the film and the substrate, ZnO nanocrystals are usually obtained. The growth behavior at the film-substrate interface is found to be strongly dependent on the growth temperature,while the growth pressure determines the shape of the nanostructures as they grow. It is difficult to obtain ZnO films that have good quality and a smooth surface simultaneously. Due to the smaller lattice mismatch,the critical thickness of ZnO on the Al2O3 (1120) surface is found to be much larger than that on the Al2O3 (0001) surface. ZnO/MgZnO quantum wells with graded well thicknesses are grown on the Al2O3 (1120) surfaces,and their optical properties are studied. The built-in electric field in the well layer, generated by the piezoelectric effect, is estimated to be 3 × 10^5 V/cm. It is found that growth at low temperatures and low pressures may facilitate the incorporation of acceptor impurities in ZnO.
基金Project(51302044)supported by the National Natural Science Foundation of ChinaProject(2012M521596)supported by the Chinese Postdoctoral Science FoundationProject(KLB11003)supported by the Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute,China
文摘Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.
文摘The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.
文摘Boron-doped zinc oxide transparent (BZO) films were prepared by sol-gel method. The effect of pyrolysis temperature on the crystallization behavior and properties was systematically investigated. XRD patterns revealed that the BZO films had wurtzite structure with a preferential growth orientation along the c-axis. With the increase of pyrolysis temperature, the particle size and surface roughness of the BZO films increased, suggesting that pyrolysis temperature is the critical factor for determining the crystallization behavior of the BZO films. Moreover, the carrier concentration and the carrier mobility increased with increasing the pyrolysis temperature, and the mean transmittance for every film is over 90% in the visible range.
文摘ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
文摘This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.
基金This work was financially supported by the Key Research Program of National Natural Science Foundation of China (Nos.90301002 and 90201025).
文摘ZnO thin films were deposited on Si(111) substrates through a radio frequency (rf) magnetron sputtering system. Then the samples were annealed at different temperatures in air ambience and ammonia ambience respectively. The structure and composition of the ZnO films were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The morphology of the samples was studied by scanning electron microscopy (SEM). Measured results show that ZnO films with hexagonal wurtzite structure were grown on Si(111) substrates when annealed in the two ambiences. The volatilization process of ZnO in the ammonia ambience at high temperature was discussed and the mechanism of the reaction was analyzed.
文摘To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.
基金supported by the National Natural Science Foundation of China (No. 61671017)Key Project of Excellent Youth Talent Support Program in Colleges and Universities of Anhui Province (No. gxyqZD2018004)+1 种基金Provincial Natural Science Foundation of Anhui Higher Education Institution of China (No. KJ2016A787)Anhui Provincial Natural Science Foundation of China (No. 1508085ME72)
文摘This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.
基金supported by the National Natural Science Foundation of China(Grant No.11304160)the Natural Science Foundation of Jiangsu Provincial Higher Education Institutions,China(Grant No.13KJB140008)the Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213018)
文摘Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.
基金Project supported by the "863" High Technology Research Program in China (Grant No 2001AA311120), the National Natural Science Foundation of China (Grant No 60278031), the Innovation Project of Chinese Academy of Sciences, the Jilin Province Science and Technology Development Program Project of China (Grant No 20040564) and the Young Innovation Function of the Changchun Institute of 0ptics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No Q03M23Z).
文摘This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80 ℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 33802311)
文摘The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).