The Cu-Ti-Si alloys containing in-situ formed Ti5Si3 are prepared. In order to clarify the Ti5Si3 formation processes and its microstructure characteristics, the as-cast and deeply etched Cu-Ti-Si alloys with differen...The Cu-Ti-Si alloys containing in-situ formed Ti5Si3 are prepared. In order to clarify the Ti5Si3 formation processes and its microstructure characteristics, the as-cast and deeply etched Cu-Ti-Si alloys with different compositions and cooling rates were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that the eutectic Ti5Si3 phases in Cu-Ti-Si alloys are rod-like with hexagonal cross section which tend to intertwine with each other to form a firm skeleton like a bird nest structure which can make the alloys keep their original shape even after etching off the Cu matrix. In addition, there is Cu in the center of many Ti5Si3 rods, resulting in a core-shell structure. With the increase of the cooling rate, Ti5Si3 distributes more uniformly, and the diameter of Ti5Si3 significantly decreases, with a minimum size of less than 100 nm, while the aspect ratio of Ti5Si3 increases.展开更多
The improvement of mechanical properties must be achieved by designing and constructing more suitable microstructure,such as hierarchical microstructure.In order to significantly enhance the creep resistance of titani...The improvement of mechanical properties must be achieved by designing and constructing more suitable microstructure,such as hierarchical microstructure.In order to significantly enhance the creep resistance of titanium matrix composites(TMCs),two-scale network microstructure was constructed including the first-scale network(<150μm)with micro-TiB whisker(TiBw)reinforcement and the second-scale network(<30μm)with nano-Ti5Si3 reinforcement by powder metallurgy and in-situ synthesis.The results showed that the creep rate of the composite was remarkably reduced by an order of magnitude compared with the Ti6Al4V alloy at 550℃,600℃,650℃ under the stresses between 100 MPa and 350 MPa.Moreover,the rupture time of the composite was increased by 20 times,compared with that of the Ti6Al4 Valloy at 550℃/300 MPa.The superior creep resistance could be attributed to the hierarchical microstructure.The micro-TiBw reinforcement in the first-scale network boundary contributed to creep resistance primarily by blocking grain boundary sliding,while the nano-Ti5Si3 particle in the second-scale network boundary mainly by hindering phase boundary sliding.In addition,the nano-Ti5Si3 particle was dissolved,and precipitated with smaller size than the primary Ti5Si3.This phenomenon was attributed to Si element diffusion under high temperature and external stress,which could further continuously enhance the creep resistance.Finally,the creep rate during steady-state stage was significantly decreased,which manifested superior creep resistance of the composite.展开更多
基金This work was financially supported by the Natural Science Foundation of Hebei Province of China(Grant No.E2019502057)the Fundamental Research Funds for the Central Universities,China(Grant No.2018MS120).
文摘The Cu-Ti-Si alloys containing in-situ formed Ti5Si3 are prepared. In order to clarify the Ti5Si3 formation processes and its microstructure characteristics, the as-cast and deeply etched Cu-Ti-Si alloys with different compositions and cooling rates were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that the eutectic Ti5Si3 phases in Cu-Ti-Si alloys are rod-like with hexagonal cross section which tend to intertwine with each other to form a firm skeleton like a bird nest structure which can make the alloys keep their original shape even after etching off the Cu matrix. In addition, there is Cu in the center of many Ti5Si3 rods, resulting in a core-shell structure. With the increase of the cooling rate, Ti5Si3 distributes more uniformly, and the diameter of Ti5Si3 significantly decreases, with a minimum size of less than 100 nm, while the aspect ratio of Ti5Si3 increases.
基金financially supported by the National Key R&D Program of China (No. 2017YFB0703100)the National Natural Science Foundation of China (NSFC) under Grant Nos. 51822103, 51671068 and 51731009the Fundamental Research Funds for the Central Universities (No. HIT.BRETIV.201902)
文摘The improvement of mechanical properties must be achieved by designing and constructing more suitable microstructure,such as hierarchical microstructure.In order to significantly enhance the creep resistance of titanium matrix composites(TMCs),two-scale network microstructure was constructed including the first-scale network(<150μm)with micro-TiB whisker(TiBw)reinforcement and the second-scale network(<30μm)with nano-Ti5Si3 reinforcement by powder metallurgy and in-situ synthesis.The results showed that the creep rate of the composite was remarkably reduced by an order of magnitude compared with the Ti6Al4V alloy at 550℃,600℃,650℃ under the stresses between 100 MPa and 350 MPa.Moreover,the rupture time of the composite was increased by 20 times,compared with that of the Ti6Al4 Valloy at 550℃/300 MPa.The superior creep resistance could be attributed to the hierarchical microstructure.The micro-TiBw reinforcement in the first-scale network boundary contributed to creep resistance primarily by blocking grain boundary sliding,while the nano-Ti5Si3 particle in the second-scale network boundary mainly by hindering phase boundary sliding.In addition,the nano-Ti5Si3 particle was dissolved,and precipitated with smaller size than the primary Ti5Si3.This phenomenon was attributed to Si element diffusion under high temperature and external stress,which could further continuously enhance the creep resistance.Finally,the creep rate during steady-state stage was significantly decreased,which manifested superior creep resistance of the composite.