TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing...TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing machine.The typicalinterfacial microstructure was TiBw/TC4composite/β-Ti+TiB whiskers/(Ti,Zr)2(Ni,Cu)intermetallic layer/β-Ti/Ti60alloy whenbeing brazed at940°C for10min.The interfacial microstructure evolution was influenced strongly by the diffusion and reactionbetween molten fillers and the substrates.Increasing brazing temperature decreased the thickness of brittle(Ti,Zr)2(Ni,Cu)intermetallic layer,which disappeared finally when the brazing temperature exceeded1020°C.Fracture analyses indicated thatcracks were initialized in the brittle intermetallic layer when(Ti,Zr)2(Ni,Cu)phase existed in the brazing seam.The maximumaverage shear strength of joints reached368.6MPa when brazing was conducted at1020°C.Further increasing brazing temperatureto1060°C,the shear strength was decreased due to the formation of coarse lamellar(α+β)-Ti structure.展开更多
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ...Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.展开更多
An experimental study of dwell and normal cyclic fatigue behaviours was carried out using specimens from a Ti60 forging with a bimodal microstructure. Apparent decrease in the fatigue life was found under dwell fatigu...An experimental study of dwell and normal cyclic fatigue behaviours was carried out using specimens from a Ti60 forging with a bimodal microstructure. Apparent decrease in the fatigue life was found under dwell fatigue condition as compared to that under normal cyclic condition. Strain produced in each cycle in dwell fatigued specimens was observed larger than that in its normal cyclic-fatigued counterparts. Interior crack initiation was found in most dwell fatigued specimens as compared to the subsurface crack initiation under normal cyclic fatigue condition. Flat and bright facets were found at crack initiation sites in both cases. The facet density is higher in dwell condition, which is consistent with the crystal orientation and Schmid factors analysis of α grains around secondary cracks using electron back-scattered diffraction (EBSD) methods. Dwell loading favours cleavage in α grains with their basal plane normals aligned no more than 15° to the loading axis, which may account for its lower fatigue life according to the present study.展开更多
The dependence of α-phase size on flow stress was characterized by a proposed kinetic model during dynamic recrystallization (DRX) steady state in Ti60 alloy. Accord- ing to the isothermal compression tests, the in...The dependence of α-phase size on flow stress was characterized by a proposed kinetic model during dynamic recrystallization (DRX) steady state in Ti60 alloy. Accord- ing to the isothermal compression tests, the influence of deformation parameters on the steady-state flow stress was analyzed and the constitutive equation was established to predict the steady-state flow stress under different defor- mation temperatures and strain rates. A power-law rela- tionship between the DRX average grain size and steady- state flow stress with an exponent of -2 is obtained from the dynamic balance during DRX steady state. The effect of deformation parameters on at-phase size was observed through the microstructure after deformation, and the applicability of the model for Ti60 alloy was verified by the comparison between predicted and experimental data.展开更多
Effects of welding parameters on the microstructure and mechanical properties of Ti/Cu/Ni joint welded by electron beam were investigated.High welding heat input increased the melting quantity of Ti60 titanium alloy a...Effects of welding parameters on the microstructure and mechanical properties of Ti/Cu/Ni joint welded by electron beam were investigated.High welding heat input increased the melting quantity of Ti60 titanium alloy and promoted the formation of Ti-Cu intermetallic compounds(IMC)such as Ti_(2)Cu and Ti_(3)Cu_(4),increasing the brittleness of the joints.Low welding heat input was not conducive to the complete melting of the copper interlayer,and the unmelted copper reduced the performance of the joints.Under the optimal welding parameters,Ti-Ni IMCs in the weld would be replaced by(Cu,Ni)solid solutions((Cu,Ni)_(ss)).However,Ti-Cu IMC layers cannot be eliminated entirely by changing the welding parameters.The maximum tensile strength of the joints was 201 MPa.The fracture of the joints occurred at the Ti-Cu IMC layer,which was a typical brittle fracture.展开更多
基金Projects(51775138,U1537206)supported by the National Natural Science Foundation of ChinaProject(2015DFA50470)supported by the International Science&Technology Cooperation Program of ChinaProject(2017GGX40103)supported by the Key Research&Development Program of Shandong Province,China
文摘TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing machine.The typicalinterfacial microstructure was TiBw/TC4composite/β-Ti+TiB whiskers/(Ti,Zr)2(Ni,Cu)intermetallic layer/β-Ti/Ti60alloy whenbeing brazed at940°C for10min.The interfacial microstructure evolution was influenced strongly by the diffusion and reactionbetween molten fillers and the substrates.Increasing brazing temperature decreased the thickness of brittle(Ti,Zr)2(Ni,Cu)intermetallic layer,which disappeared finally when the brazing temperature exceeded1020°C.Fracture analyses indicated thatcracks were initialized in the brittle intermetallic layer when(Ti,Zr)2(Ni,Cu)phase existed in the brazing seam.The maximumaverage shear strength of joints reached368.6MPa when brazing was conducted at1020°C.Further increasing brazing temperatureto1060°C,the shear strength was decreased due to the formation of coarse lamellar(α+β)-Ti structure.
基金financially supported by the National Key Research and Development Program of China(Grant No.2020YFB2008300)。
文摘Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.
文摘An experimental study of dwell and normal cyclic fatigue behaviours was carried out using specimens from a Ti60 forging with a bimodal microstructure. Apparent decrease in the fatigue life was found under dwell fatigue condition as compared to that under normal cyclic condition. Strain produced in each cycle in dwell fatigued specimens was observed larger than that in its normal cyclic-fatigued counterparts. Interior crack initiation was found in most dwell fatigued specimens as compared to the subsurface crack initiation under normal cyclic fatigue condition. Flat and bright facets were found at crack initiation sites in both cases. The facet density is higher in dwell condition, which is consistent with the crystal orientation and Schmid factors analysis of α grains around secondary cracks using electron back-scattered diffraction (EBSD) methods. Dwell loading favours cleavage in α grains with their basal plane normals aligned no more than 15° to the loading axis, which may account for its lower fatigue life according to the present study.
基金financially supported by the National Natural Science Foundation of China (No.51205319)the Natural Science Foundation of Shannxi Province (No.2015JQ5152)the Fundamental Research Funds for the Central Universities (No.3102016ZY010)
文摘The dependence of α-phase size on flow stress was characterized by a proposed kinetic model during dynamic recrystallization (DRX) steady state in Ti60 alloy. Accord- ing to the isothermal compression tests, the influence of deformation parameters on the steady-state flow stress was analyzed and the constitutive equation was established to predict the steady-state flow stress under different defor- mation temperatures and strain rates. A power-law rela- tionship between the DRX average grain size and steady- state flow stress with an exponent of -2 is obtained from the dynamic balance during DRX steady state. The effect of deformation parameters on at-phase size was observed through the microstructure after deformation, and the applicability of the model for Ti60 alloy was verified by the comparison between predicted and experimental data.
基金supported by Shandong Provincial Key Research and Development Program of China(2019JZZY010439)。
文摘Effects of welding parameters on the microstructure and mechanical properties of Ti/Cu/Ni joint welded by electron beam were investigated.High welding heat input increased the melting quantity of Ti60 titanium alloy and promoted the formation of Ti-Cu intermetallic compounds(IMC)such as Ti_(2)Cu and Ti_(3)Cu_(4),increasing the brittleness of the joints.Low welding heat input was not conducive to the complete melting of the copper interlayer,and the unmelted copper reduced the performance of the joints.Under the optimal welding parameters,Ti-Ni IMCs in the weld would be replaced by(Cu,Ni)solid solutions((Cu,Ni)_(ss)).However,Ti-Cu IMC layers cannot be eliminated entirely by changing the welding parameters.The maximum tensile strength of the joints was 201 MPa.The fracture of the joints occurred at the Ti-Cu IMC layer,which was a typical brittle fracture.