Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The in...Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.展开更多
Specimens of Ti6A14V alloy were implanted with nitrogen ions of 4× 1018 cm-2 at temperatures from 100 to 600℃. Auger Electron Spectroscopy (AES), microhardness measurements and pin-on-disk wear testing, Scanning...Specimens of Ti6A14V alloy were implanted with nitrogen ions of 4× 1018 cm-2 at temperatures from 100 to 600℃. Auger Electron Spectroscopy (AES), microhardness measurements and pin-on-disk wear testing, Scanning Electron Mi- croscopy (SEM), and Glancing angle X-ray Diffraction. (XRD) were utilized to evaluate the surface property improvements. The thickness of implanted layers increased by about an order of magnitude when the temperature was elevated from 100 to 6000℃. Higher surface hardness and wear resistance were also obtained in the high tempera-ture implantation. The XRD image showed the presence of nitrides of titanium at the implanted surface.展开更多
In this research, the effects of target sputtering power on the structure and optical properties of radio frequency (RF) sputtered Ti6A14V films were investigated. Different sputtering RF powers were used to produce...In this research, the effects of target sputtering power on the structure and optical properties of radio frequency (RF) sputtered Ti6A14V films were investigated. Different sputtering RF powers were used to produce different thicknesses of Ti6A14V thin films, From the X-ray diffraction, it was found that the Ti6A14V films had polycrystalline cubic and hexagonal structures and increased films crystallinity and crystalline size with increasing the sputtering power. Atomic forces microscopy (AFM) gave us a nanometric film character, films homogeneity, and surfaces roughness. A higher degree of roughness and average grain size with increasing RF power was exhibited. Band gap and refractive index of Ti6A14V thin films varied with sputtering RF powers.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035802)National Natural Science Foundation of China(Grant No.51575453)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.3102015JCS05002)the 111 Project,China(Grant No.B13044)
文摘Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.
基金Supported by the Defense Science Foundation (No.98JS50.3.3 HZ5801)
文摘Specimens of Ti6A14V alloy were implanted with nitrogen ions of 4× 1018 cm-2 at temperatures from 100 to 600℃. Auger Electron Spectroscopy (AES), microhardness measurements and pin-on-disk wear testing, Scanning Electron Mi- croscopy (SEM), and Glancing angle X-ray Diffraction. (XRD) were utilized to evaluate the surface property improvements. The thickness of implanted layers increased by about an order of magnitude when the temperature was elevated from 100 to 6000℃. Higher surface hardness and wear resistance were also obtained in the high tempera-ture implantation. The XRD image showed the presence of nitrides of titanium at the implanted surface.
文摘In this research, the effects of target sputtering power on the structure and optical properties of radio frequency (RF) sputtered Ti6A14V films were investigated. Different sputtering RF powers were used to produce different thicknesses of Ti6A14V thin films, From the X-ray diffraction, it was found that the Ti6A14V films had polycrystalline cubic and hexagonal structures and increased films crystallinity and crystalline size with increasing the sputtering power. Atomic forces microscopy (AFM) gave us a nanometric film character, films homogeneity, and surfaces roughness. A higher degree of roughness and average grain size with increasing RF power was exhibited. Band gap and refractive index of Ti6A14V thin films varied with sputtering RF powers.