TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing...TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing machine.The typicalinterfacial microstructure was TiBw/TC4composite/β-Ti+TiB whiskers/(Ti,Zr)2(Ni,Cu)intermetallic layer/β-Ti/Ti60alloy whenbeing brazed at940°C for10min.The interfacial microstructure evolution was influenced strongly by the diffusion and reactionbetween molten fillers and the substrates.Increasing brazing temperature decreased the thickness of brittle(Ti,Zr)2(Ni,Cu)intermetallic layer,which disappeared finally when the brazing temperature exceeded1020°C.Fracture analyses indicated thatcracks were initialized in the brittle intermetallic layer when(Ti,Zr)2(Ni,Cu)phase existed in the brazing seam.The maximumaverage shear strength of joints reached368.6MPa when brazing was conducted at1020°C.Further increasing brazing temperatureto1060°C,the shear strength was decreased due to the formation of coarse lamellar(α+β)-Ti structure.展开更多
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ...Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.展开更多
基金Projects(51775138,U1537206)supported by the National Natural Science Foundation of ChinaProject(2015DFA50470)supported by the International Science&Technology Cooperation Program of ChinaProject(2017GGX40103)supported by the Key Research&Development Program of Shandong Province,China
文摘TiBw/TC4composite was brazed to Ti60alloy successfully using TiZrNiCu amorphous filler alloy,and the interfacialmicrostructures and mechanical properties were characterized by SEM,EDX,XRD and universal tensile testing machine.The typicalinterfacial microstructure was TiBw/TC4composite/β-Ti+TiB whiskers/(Ti,Zr)2(Ni,Cu)intermetallic layer/β-Ti/Ti60alloy whenbeing brazed at940°C for10min.The interfacial microstructure evolution was influenced strongly by the diffusion and reactionbetween molten fillers and the substrates.Increasing brazing temperature decreased the thickness of brittle(Ti,Zr)2(Ni,Cu)intermetallic layer,which disappeared finally when the brazing temperature exceeded1020°C.Fracture analyses indicated thatcracks were initialized in the brittle intermetallic layer when(Ti,Zr)2(Ni,Cu)phase existed in the brazing seam.The maximumaverage shear strength of joints reached368.6MPa when brazing was conducted at1020°C.Further increasing brazing temperatureto1060°C,the shear strength was decreased due to the formation of coarse lamellar(α+β)-Ti structure.
基金financially supported by the National Key Research and Development Program of China(Grant No.2020YFB2008300)。
文摘Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.