Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19...Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.展开更多
Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electr...Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that TiO2 film prepared from precursor solution without PEG is composed of spherical particles of about 100 nm and several nanometer mesoporous pores. With the increase of the amount of PEG added to the precursor solution, the diameter and the depth of the pores in the resultant films increas on the decomposition of PEG during heat-treatment, which lead to them increase of the surface roughness of the films. XRD and TEM results show that the single anatase phase is precipitated and there are some orientation effects in (101) direction.展开更多
Tetrasulfonated Zn,Co,Ga,In,TiO and metal free phthalocyanine (MTsPc) mainly exist as dimers on the nanostructured TiO 2 electrode and mostly exist as monomers in dimethyl sulfoxide. The photocurrent action spectra ...Tetrasulfonated Zn,Co,Ga,In,TiO and metal free phthalocyanine (MTsPc) mainly exist as dimers on the nanostructured TiO 2 electrode and mostly exist as monomers in dimethyl sulfoxide. The photocurrent action spectra of the liquid junction based on the MTsPc/TiO 2 nanostructured electrode show that only the absorbance of the MTsPc monomer contributes to a photocurrent while that of the MTsPc face to face dimer does not generate a photocurrent.展开更多
A photoelectrochemical process in the degradation of an azodye (Acid Orange II) on a Pt/TiO 2 film electrode was investigated. By using the glass device and the voltage stabilized source of direct current, decoloriza...A photoelectrochemical process in the degradation of an azodye (Acid Orange II) on a Pt/TiO 2 film electrode was investigated. By using the glass device and the voltage stabilized source of direct current, decolorization ratios higher than 78% were observed during a period of 5h. Comparing this value with the sum of the decolorization ratios obtained by a sole application of electrochemical(lower than 3%) and photochemical(about 23%) procedures, a significant synergic effect between both processes was observed. The effects of adscititious voltage and pH value on the decolorization ratios were obvious while the effect of the amount of aeration was minor.展开更多
By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that th...By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.展开更多
Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photocond...Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.展开更多
Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, toget...Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.展开更多
Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In thi...Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In this study, TiO2 porous films were synthesized by sol-gel method. Polyethylene glycol (PEG) 4000 was used as a templating reagent, which is oxidized at a lower temperature than TiO2. This allows the formation of a “skeleton” of porous TiO2 with increased surface area, resulting in higher photocatalytic activity. The film characterization was made with help of FE-SEM microscope, XRD diffractometer and scotch tape test. Finally, the oxidation experiments were performed using methylene blue as a model pollutant and they revealed an increase in the photocatalytic activity of porous films in comparison with the non-porous films.展开更多
The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-g...The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.展开更多
The nano-ZnFe2O4/TiO2 films possess the functions of desulfurization and degradation for organic pollutants. The sols of ZnFe2O4/TiO2 were prepared by sol-gel method and coated on glass and porous ceramic by vertical ...The nano-ZnFe2O4/TiO2 films possess the functions of desulfurization and degradation for organic pollutants. The sols of ZnFe2O4/TiO2 were prepared by sol-gel method and coated on glass and porous ceramic by vertical coating and dipping-lift processes, respectively, and the samples were obtained after drying and sintering. The composition, appearance, absorption spectrum of the films, and the influence of the film on porous ceramic performances were analyzed using SEM, AFM, UVVis spectrometer, and mercury porosimeter, respectively, to determine the operation parameters of the multifunction porous ceramic elements for gas-purification.展开更多
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t...We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.展开更多
Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface m...Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.展开更多
Nanostructured TiO 2 porous film supported on nickel was prepared through sol-gel process,and was used as photoelectrode in solar energy photoelectrochemical cell.It was found that short circuit photocurrent and open ...Nanostructured TiO 2 porous film supported on nickel was prepared through sol-gel process,and was used as photoelectrode in solar energy photoelectrochemical cell.It was found that short circuit photocurrent and open circuit photovoltage of the photoelectrodes increased with the increment of sintering temperature and thickness of TiO 2 film.Through STM,the pore quantity and diameter of nanostructured TiO 2 film were found to increase with the increment of sintering temperature.It was found that the transparence of different thickness nanostructured TiO 2 films coated on quartz did not change much.展开更多
The photocurrent created by the TiO 2 nanoporous film electrode modified by octadecanethiol(18SH) self-assembled monolayer(SAM) was found to be 1 95 times greater than that without modification as shown by cyclic volt...The photocurrent created by the TiO 2 nanoporous film electrode modified by octadecanethiol(18SH) self-assembled monolayer(SAM) was found to be 1 95 times greater than that without modification as shown by cyclic voltammetry(CV). Meanwhile the maximum adsorbed peak has extended to the infrared range for about 20 nm. The formation of SAM was also assured with CV and small amplitude isosceles triangle potential methods, where the sensitization of SAM on the oxidation of CH 3OH on the TiO 2 nanoporous film electrode could be observed clearly. The results elucidated that the increased photocurrent by modification of octadecanethiol could not be simply attributed to the oxidation of octadecanethiol or ethanol. The results also implied that the application of SAM would be practicable in the sensitization of TiO 2 nanoporous film electrode in solar cell area.展开更多
文摘Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.
基金The work was partially supported by a grant from the National Natural Science Foundation of China and the ResearchGrants Counc
文摘Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that TiO2 film prepared from precursor solution without PEG is composed of spherical particles of about 100 nm and several nanometer mesoporous pores. With the increase of the amount of PEG added to the precursor solution, the diameter and the depth of the pores in the resultant films increas on the decomposition of PEG during heat-treatment, which lead to them increase of the surface roughness of the films. XRD and TEM results show that the single anatase phase is precipitated and there are some orientation effects in (101) direction.
文摘Tetrasulfonated Zn,Co,Ga,In,TiO and metal free phthalocyanine (MTsPc) mainly exist as dimers on the nanostructured TiO 2 electrode and mostly exist as monomers in dimethyl sulfoxide. The photocurrent action spectra of the liquid junction based on the MTsPc/TiO 2 nanostructured electrode show that only the absorbance of the MTsPc monomer contributes to a photocurrent while that of the MTsPc face to face dimer does not generate a photocurrent.
文摘A photoelectrochemical process in the degradation of an azodye (Acid Orange II) on a Pt/TiO 2 film electrode was investigated. By using the glass device and the voltage stabilized source of direct current, decolorization ratios higher than 78% were observed during a period of 5h. Comparing this value with the sum of the decolorization ratios obtained by a sole application of electrochemical(lower than 3%) and photochemical(about 23%) procedures, a significant synergic effect between both processes was observed. The effects of adscititious voltage and pH value on the decolorization ratios were obvious while the effect of the amount of aeration was minor.
基金Supported by the National Natural Science Foundation of China(Nos.20606035, 20401015, 50574082)Chinese Acade-my of Sciences Project of One Hundred Talents.
文摘By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.
基金This work was supported by National Research Fund for Fundamental Key Project(G2000028205)Innovative Foundation of Chinese Academy of Sciences(KGCX2-303-02)the Project of the National Natural Science Foundation of China(29873057).
文摘Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.
文摘Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.
文摘Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In this study, TiO2 porous films were synthesized by sol-gel method. Polyethylene glycol (PEG) 4000 was used as a templating reagent, which is oxidized at a lower temperature than TiO2. This allows the formation of a “skeleton” of porous TiO2 with increased surface area, resulting in higher photocatalytic activity. The film characterization was made with help of FE-SEM microscope, XRD diffractometer and scotch tape test. Finally, the oxidation experiments were performed using methylene blue as a model pollutant and they revealed an increase in the photocatalytic activity of porous films in comparison with the non-porous films.
文摘The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.
基金Supported by National 863 Project of China (2001AAA333040).
文摘The nano-ZnFe2O4/TiO2 films possess the functions of desulfurization and degradation for organic pollutants. The sols of ZnFe2O4/TiO2 were prepared by sol-gel method and coated on glass and porous ceramic by vertical coating and dipping-lift processes, respectively, and the samples were obtained after drying and sintering. The composition, appearance, absorption spectrum of the films, and the influence of the film on porous ceramic performances were analyzed using SEM, AFM, UVVis spectrometer, and mercury porosimeter, respectively, to determine the operation parameters of the multifunction porous ceramic elements for gas-purification.
基金supported by the HK Innovation and Technology Fund (ITS/004/14)the HK-RGC General Research Funds (GRE No. HKUST 606511)
文摘We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.
基金supported by the Science Foun-dation of Educational Commission and Provincial Key Laboratory Program of Liaoning Province of China(Grant No.2008593 and CL-200902)~~
文摘Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.
文摘Nanostructured TiO 2 porous film supported on nickel was prepared through sol-gel process,and was used as photoelectrode in solar energy photoelectrochemical cell.It was found that short circuit photocurrent and open circuit photovoltage of the photoelectrodes increased with the increment of sintering temperature and thickness of TiO 2 film.Through STM,the pore quantity and diameter of nanostructured TiO 2 film were found to increase with the increment of sintering temperature.It was found that the transparence of different thickness nanostructured TiO 2 films coated on quartz did not change much.
文摘The photocurrent created by the TiO 2 nanoporous film electrode modified by octadecanethiol(18SH) self-assembled monolayer(SAM) was found to be 1 95 times greater than that without modification as shown by cyclic voltammetry(CV). Meanwhile the maximum adsorbed peak has extended to the infrared range for about 20 nm. The formation of SAM was also assured with CV and small amplitude isosceles triangle potential methods, where the sensitization of SAM on the oxidation of CH 3OH on the TiO 2 nanoporous film electrode could be observed clearly. The results elucidated that the increased photocurrent by modification of octadecanethiol could not be simply attributed to the oxidation of octadecanethiol or ethanol. The results also implied that the application of SAM would be practicable in the sensitization of TiO 2 nanoporous film electrode in solar cell area.