A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion...A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.展开更多
The photo-induced hydrophilicity of SiO2 overlayer on TiO2 films prepared by sol-gel method was investigated by means of soak angle measurement, XPS, UV-VIS and FTIR spectra. The results show that, compared with the T...The photo-induced hydrophilicity of SiO2 overlayer on TiO2 films prepared by sol-gel method was investigated by means of soak angle measurement, XPS, UV-VIS and FTIR spectra. The results show that, compared with the TiO2 film without SiO2 overlayer, when the TiO2 film is thoroughly covered by SiO2 overlayer, the hydrophilicity and the sustained effect are enhanced. It is found that the significant growth of the OH- group occurs in the surface of SiO2 overlayer. The different mechanism of enhanced hydrophilicity between SiO2 overlayer on TiO2 films and TiO2/SiO2 mixing films was analyzed. The result suggests that the photo-generated electrons created in the interface between TiO2 and SiO2 tend to reduce the Ti(Ⅳ) cation to the Ti(Ⅲ) state, and the photogenerated holes transmit through the SiO2 layer to uppermost surface efficiently. Once the holes go up to the surface, they tend to make the surface hydrophilic. The stable hydrophilicity of SiO2 overlayer which adsorbs more stable OH groups, enhances the sustained effect, i.e. the super-hydrophilic state can be maintained for a long time in dark place.展开更多
TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning ...TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.展开更多
A new TiO2 modified film on carbon steel was prepared by electroless plating and sol gel composite process. An artificial neural net was used to optimize the preparing condition of the film. The optimized condition of...A new TiO2 modified film on carbon steel was prepared by electroless plating and sol gel composite process. An artificial neural net was used to optimize the preparing condition of the film. The optimized condition of the TiO2-modified film on carbon steel is as follows: plating time of NiP is 50 min, number of dip coating is 4, heat treatment time is 2 h, and the molar ratio of complexing reagent to Ti(OC4 H9)4 is 1.5 : 1. Corrosion behavior of carbon steel with coating was investigated by polarization resistance measurement, anode polarization, EIS and ESEM measurement. XPS was used to characterize the element valence of the modified film. Results show that carbon steel with TiO2 modified film has good corrosion resistance in 0.5 mol/L of H2SO4 solution and 0.5 mol/L of NaCl solution. It is also found that the preparing condition of forming TiO2-modified film can be obtained easily by the artificial neural net.展开更多
In order to improve the corrosion resistance and biocompatibility of NiTi surgical alloy, TiO2 and TiO2-SiO2 thin films were prepared by sol-gel method. The surface characteristics of the film, which include surface c...In order to improve the corrosion resistance and biocompatibility of NiTi surgical alloy, TiO2 and TiO2-SiO2 thin films were prepared by sol-gel method. The surface characteristics of the film, which include surface composition, microstructure and surface morphology, were studied by X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectra (XPS), respectively. A scratching test was used to assess the interface adhesive strength between the film and substrate. The corrosion resistance of NiTi alloy coated with oxide films were studied by anodic polarization curves measurement in biological solution. Additionally, a preliminary study of the in vitro bioactivity of the films was conducted. The results indicated that TiO2 and TiO2-SiO2 (Ti/Si=4:1) films have higher electrochemical corrosion resistance and can be used as protective layers on NiTi alloy. In addition, TiO2-SiO2 composite films have better bioactivity than TiO2 film.展开更多
PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,wat...PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,water concentration and reaction temperature,have been investigated to control the thickness of silica shells.The shell thickness was prepositional to the square root of the initial concentration of TEOS and first increased with increasing water concentration,reached a maximum at about 2.0 mol/L and then started decreasing beyond that concentration.It was also found that the shell thickness decreased firstly with the reaction temperature added,then tended to a constant.The so-synthesized PS/SiO2 core-shell particles were directly crystallized into 3-D ordered thin film,then sintered at 570℃ into the ordered macroporous thin film.Compared with the conditional method,the present approach avoids repeatedly filling the precursor in the templetes and save time more.展开更多
TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle ...TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle of water, the microstructure, the transmittance, the photocatalytic activity and the specific surface area . The results showed that 10mol% of SiO2 additive was the most effective for decreasing contact angle of water. The SiO2 additive of less than 30mol% has a suppressive effect on the crystal growth of anatase in calcinations, resulting in a large surface area. Consequently, the super-hydrophilicity was improved.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
Although scaling will continue for couple of decades but device geometries reaches to atomic size and limitation of quantum mechanical physical boundaries. To address these problems there is need of innovation in mate...Although scaling will continue for couple of decades but device geometries reaches to atomic size and limitation of quantum mechanical physical boundaries. To address these problems there is need of innovation in material science & engineering, device structure, and new nano devices based on different principle of physics. So TiO2 thin films have been grown on well clean N-type silicon substrates via a sol–gel spin coating method. MOS capacitor were fabricated and characterized with SiO2 and TiO2 as dielectric material on N-type silicon wafer. The thickness was measured by stylus profiler and found to be 510 ? and 528 ? for SiO2 and TiO2 respectively. Some of the material parameters were found from the measured Capacitance -Voltage (C-V) curve obtained by SUPREM-III (Stanford University Process Engineering Model Version 0-83) for SiO2 and C-V Keithly 590 analyzer for TiO2 thin films. The result shows that obtained TiO2 film present a dielectric constant of approximately 80. The refractive index was found to be 2.4 and optical constant was 5.43 obtained from Ellipsometry. Band gap 3.6 eV of TiO2 was calculated by spectrophotometer and Surface morphology was obtained using Scanning Electron Microscope (SEM-JEOL) micrograph. The aluminum (Al) metal was deposited by the thermal evaporation system on the back side of the sample for the ohmic contact. Analysis shows that TiO2 may be acceptable as a viable substitute for high k dielectric in order to prevent the tunneling current problems.展开更多
The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface wit...The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.展开更多
文摘A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.
文摘The photo-induced hydrophilicity of SiO2 overlayer on TiO2 films prepared by sol-gel method was investigated by means of soak angle measurement, XPS, UV-VIS and FTIR spectra. The results show that, compared with the TiO2 film without SiO2 overlayer, when the TiO2 film is thoroughly covered by SiO2 overlayer, the hydrophilicity and the sustained effect are enhanced. It is found that the significant growth of the OH- group occurs in the surface of SiO2 overlayer. The different mechanism of enhanced hydrophilicity between SiO2 overlayer on TiO2 films and TiO2/SiO2 mixing films was analyzed. The result suggests that the photo-generated electrons created in the interface between TiO2 and SiO2 tend to reduce the Ti(Ⅳ) cation to the Ti(Ⅲ) state, and the photogenerated holes transmit through the SiO2 layer to uppermost surface efficiently. Once the holes go up to the surface, they tend to make the surface hydrophilic. The stable hydrophilicity of SiO2 overlayer which adsorbs more stable OH groups, enhances the sustained effect, i.e. the super-hydrophilic state can be maintained for a long time in dark place.
文摘TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.
文摘A new TiO2 modified film on carbon steel was prepared by electroless plating and sol gel composite process. An artificial neural net was used to optimize the preparing condition of the film. The optimized condition of the TiO2-modified film on carbon steel is as follows: plating time of NiP is 50 min, number of dip coating is 4, heat treatment time is 2 h, and the molar ratio of complexing reagent to Ti(OC4 H9)4 is 1.5 : 1. Corrosion behavior of carbon steel with coating was investigated by polarization resistance measurement, anode polarization, EIS and ESEM measurement. XPS was used to characterize the element valence of the modified film. Results show that carbon steel with TiO2 modified film has good corrosion resistance in 0.5 mol/L of H2SO4 solution and 0.5 mol/L of NaCl solution. It is also found that the preparing condition of forming TiO2-modified film can be obtained easily by the artificial neural net.
基金This work was supported by the National Natural Science Foundation of China(No.50081001)the Education Department Project of Liaoning Province(No.202073425).
文摘In order to improve the corrosion resistance and biocompatibility of NiTi surgical alloy, TiO2 and TiO2-SiO2 thin films were prepared by sol-gel method. The surface characteristics of the film, which include surface composition, microstructure and surface morphology, were studied by X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectra (XPS), respectively. A scratching test was used to assess the interface adhesive strength between the film and substrate. The corrosion resistance of NiTi alloy coated with oxide films were studied by anodic polarization curves measurement in biological solution. Additionally, a preliminary study of the in vitro bioactivity of the films was conducted. The results indicated that TiO2 and TiO2-SiO2 (Ti/Si=4:1) films have higher electrochemical corrosion resistance and can be used as protective layers on NiTi alloy. In addition, TiO2-SiO2 composite films have better bioactivity than TiO2 film.
基金Supported by the National Natural Science Foundation of China(No.:20221603)
文摘PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,water concentration and reaction temperature,have been investigated to control the thickness of silica shells.The shell thickness was prepositional to the square root of the initial concentration of TEOS and first increased with increasing water concentration,reached a maximum at about 2.0 mol/L and then started decreasing beyond that concentration.It was also found that the shell thickness decreased firstly with the reaction temperature added,then tended to a constant.The so-synthesized PS/SiO2 core-shell particles were directly crystallized into 3-D ordered thin film,then sintered at 570℃ into the ordered macroporous thin film.Compared with the conditional method,the present approach avoids repeatedly filling the precursor in the templetes and save time more.
基金Funded by Key Scientific and Technological Items of the Ministry of Education (No.99087) .
文摘TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle of water, the microstructure, the transmittance, the photocatalytic activity and the specific surface area . The results showed that 10mol% of SiO2 additive was the most effective for decreasing contact angle of water. The SiO2 additive of less than 30mol% has a suppressive effect on the crystal growth of anatase in calcinations, resulting in a large surface area. Consequently, the super-hydrophilicity was improved.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
文摘Although scaling will continue for couple of decades but device geometries reaches to atomic size and limitation of quantum mechanical physical boundaries. To address these problems there is need of innovation in material science & engineering, device structure, and new nano devices based on different principle of physics. So TiO2 thin films have been grown on well clean N-type silicon substrates via a sol–gel spin coating method. MOS capacitor were fabricated and characterized with SiO2 and TiO2 as dielectric material on N-type silicon wafer. The thickness was measured by stylus profiler and found to be 510 ? and 528 ? for SiO2 and TiO2 respectively. Some of the material parameters were found from the measured Capacitance -Voltage (C-V) curve obtained by SUPREM-III (Stanford University Process Engineering Model Version 0-83) for SiO2 and C-V Keithly 590 analyzer for TiO2 thin films. The result shows that obtained TiO2 film present a dielectric constant of approximately 80. The refractive index was found to be 2.4 and optical constant was 5.43 obtained from Ellipsometry. Band gap 3.6 eV of TiO2 was calculated by spectrophotometer and Surface morphology was obtained using Scanning Electron Microscope (SEM-JEOL) micrograph. The aluminum (Al) metal was deposited by the thermal evaporation system on the back side of the sample for the ohmic contact. Analysis shows that TiO2 may be acceptable as a viable substitute for high k dielectric in order to prevent the tunneling current problems.
文摘The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.