An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surf...An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.展开更多
TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
The activated carbon-supported TiO2 nanoparticles(TiO2/AC)were prepared by a properly controlled sol-gel method.The effects of activated carbons(AC)support on inactivated properties of TiO2 nanoparticles were evaluate...The activated carbon-supported TiO2 nanoparticles(TiO2/AC)were prepared by a properly controlled sol-gel method.The effects of activated carbons(AC)support on inactivated properties of TiO2 nanoparticles were evaluated by photocatalytic inactivation experiments of Escherichia coli.The key factors affecting the inactivation effciency were investigated,including electric power of lamp, temperature,and pH values.The results show that the TiO2/AC composites have high inactivation properties of E.coli in compari...展开更多
TiO2-loaded activated carbon fibers (ACF) were prepared by a hydrothermal method. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR...TiO2-loaded activated carbon fibers (ACF) were prepared by a hydrothermal method. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry and UV-vis diffuse reflectance spectra (DRS). SEM images showed that the TiO2 nanoparticles were deposited on the surface of ACF, and the particle size and loading amount of TiO2 were varied by changing the initial concentration of tetrabutyl titanate (TBOT). The results of an ash experiment showed that the loading amounts of TiO2 were 18.4%, 43.3%, 52.5%, 75.1%, and 91.1% for initial concentrations of TBOT of 0.07,014, 0.21,0.28, and 0.35 tool/L, respectively, Physical interactions played an important role in the formation of TiO2/ACF composite fibers that absorb UV and visible light. Compared with those of ACF, improved adsorption and photocatalytic activity toward Rhodamine B (RhB) were observed for TiO2/ACF composite fiber. The Rhodamine B could be removed efficiently by TiO2/ACF composite fibers, and the TiO2 loading amount had a significant effect on the photocatalytic activity of TiO2/ACF composite fibers.展开更多
Polypropylene(PP) meltblown fibers were coated with titanium dioxide(Ti O2) nanoparticles using layer-by-layer(Lb L) deposition technique. The fibers were first modified with 3layers of poly(4-styrenesulfonic a...Polypropylene(PP) meltblown fibers were coated with titanium dioxide(Ti O2) nanoparticles using layer-by-layer(Lb L) deposition technique. The fibers were first modified with 3layers of poly(4-styrenesulfonic acid)(PSS) and poly(diallyl-dimethylammonium chloride)(PDADMAC) to improve the anchoring of the Ti O2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic Ti O2 nanoparticles to construct Ti O2/PDADMAC bilayer in the Lb L fashion. The number of deposited Ti O2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust Ti O2 loading. The Lb L technique showed higher Ti O2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue(MB). Results showed that the Ti O2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of Ti O2 powder dispersed in solution. The deposition of Ti O23 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4 hr.Ti O2-Lb L constructions also preserved Ti O2 adhesion on substrate surface after 1 cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of Ti O2 particles from the substrate outer surface. However, even in the third cycle, the Ti O2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8 hr of treatment.展开更多
Mesoporous TiO2 microspheres with flower-like morphology, high specific surface area, and high- crystallinity primary crystalline-phase of anatase have been prepared through a water-in-oil emulsion synthesis route ass...Mesoporous TiO2 microspheres with flower-like morphology, high specific surface area, and high- crystallinity primary crystalline-phase of anatase have been prepared through a water-in-oil emulsion synthesis route assisted by solvothermal treatment. The as-prepared powder microspheres, as well as their precursor, were characterized by various techniques. Thermogravimetry and differential thermal analysis indicated that the optimal sintering temperature of the TiO2 precursor was 550 ℃. Field emission scanning electron microscopy, laser particle size analysis, and X-ray diffractionjointly confirmed that the precursor powder with a spherical structure and main particle sizes ranging from 3 to 20 μm had the same primary crystalline-phase as the TiO2 microspheres obtained from the calcination of the precur- sor at 550 ℃ for 4 h. The specific surface area of the TiO2 microspheres was approximately 123.6 m2/g according to the Brunauer-Emmett-Teller (BET) nitrogen adsorption results. Compared with the com- mercial TiO2 powder (P25), the resulting TiO2 microspheres exhibited a higher photocatalytic activity. Based on the experimental results, a rational mechanism was proposed to elucidate the formation of the TiO2 microsoheres.展开更多
Flower-like TiO2 materials, with their advantages of high specific surface area, developed pore structure, and high photocatalytic activity, have been widely used in environmental management and air purification, ster...Flower-like TiO2 materials, with their advantages of high specific surface area, developed pore structure, and high photocatalytic activity, have been widely used in environmental management and air purification, sterilization, and surface self-cleaning, among other areas. This paper summarizes several methods used to fabricate the flower-like TiO2 nanostructures, such as the hydrothermal, solvothermal, microemulsion, sol-gel, hydrolysis, and electrodeposition oxidation methods. In addition, the morphologies, properties, and performance of different flower-like TiO2 structures are discussed. Meanwhile, the application progresses of different flower-like TiO2 structures are also analyzed.展开更多
W, N co-doped TiO2 nanoparticles were synthesized by a sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), trans- mission elect...W, N co-doped TiO2 nanoparticles were synthesized by a sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), trans- mission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-1R), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectrophotometry (DRS). The results showed that the co- doped photocatalysts were essentially uniform spherical particles with the smallest particle size of 22.5 nm. Compared to un-doped TiO2, N-TiO2 and P-25, the absorption edge of the W, N co-doped TiO2 shifted to longer wavelength and its photocatalytic activity for degradation of methyl orange (MO) under Xe-lamp (350W) was higher.展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
基金Funded by the National Natural Science Foundation of China(NSFC)(Nos.51278073,51308079 and 51408073)
文摘An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.
基金supported by the Educational and Tech-nological Department of Hunan Province(No.08B063)the Natural Science Foundation of Science and Technology Department of Hunan Government(No.2007GK3060)the Doctor Foundation of Jishou University(No.JSDXKYZZ200648).
文摘The activated carbon-supported TiO2 nanoparticles(TiO2/AC)were prepared by a properly controlled sol-gel method.The effects of activated carbons(AC)support on inactivated properties of TiO2 nanoparticles were evaluated by photocatalytic inactivation experiments of Escherichia coli.The key factors affecting the inactivation effciency were investigated,including electric power of lamp, temperature,and pH values.The results show that the TiO2/AC composites have high inactivation properties of E.coli in compari...
基金financial support of the National Natural Science Foundation of China(No.21103017No.51104042)the Fundamental Research Funds for the Central Universities(No.110405007)
文摘TiO2-loaded activated carbon fibers (ACF) were prepared by a hydrothermal method. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry and UV-vis diffuse reflectance spectra (DRS). SEM images showed that the TiO2 nanoparticles were deposited on the surface of ACF, and the particle size and loading amount of TiO2 were varied by changing the initial concentration of tetrabutyl titanate (TBOT). The results of an ash experiment showed that the loading amounts of TiO2 were 18.4%, 43.3%, 52.5%, 75.1%, and 91.1% for initial concentrations of TBOT of 0.07,014, 0.21,0.28, and 0.35 tool/L, respectively, Physical interactions played an important role in the formation of TiO2/ACF composite fibers that absorb UV and visible light. Compared with those of ACF, improved adsorption and photocatalytic activity toward Rhodamine B (RhB) were observed for TiO2/ACF composite fiber. The Rhodamine B could be removed efficiently by TiO2/ACF composite fibers, and the TiO2 loading amount had a significant effect on the photocatalytic activity of TiO2/ACF composite fibers.
基金supported by Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University, Thailandthe Nanotechnology Center (NANOTEC), NSTDA Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network+1 种基金National Research University Project of CHEthe Rachadapisek Sompote Endowment Fund (No. AM1041A)
文摘Polypropylene(PP) meltblown fibers were coated with titanium dioxide(Ti O2) nanoparticles using layer-by-layer(Lb L) deposition technique. The fibers were first modified with 3layers of poly(4-styrenesulfonic acid)(PSS) and poly(diallyl-dimethylammonium chloride)(PDADMAC) to improve the anchoring of the Ti O2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic Ti O2 nanoparticles to construct Ti O2/PDADMAC bilayer in the Lb L fashion. The number of deposited Ti O2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust Ti O2 loading. The Lb L technique showed higher Ti O2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue(MB). Results showed that the Ti O2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of Ti O2 powder dispersed in solution. The deposition of Ti O23 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4 hr.Ti O2-Lb L constructions also preserved Ti O2 adhesion on substrate surface after 1 cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of Ti O2 particles from the substrate outer surface. However, even in the third cycle, the Ti O2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8 hr of treatment.
基金The authors gratefully acknowledge the financial support for this work from State Key Development Program for Basic Research of China (No. 2010CB635107), The National Natural Science Foundation of China (Nos. 51004046, 51202064, 51302073), The National Natural Science Foundation of Hubei Province of China (No. 2010CDB05806), Wuhan Youth Chenguang Program of Sci- ence and Technology (No. 2013070104010016), and Middle-aged and Young Program of Educational Commission of Hubei Province (No. Q20101409).
文摘Mesoporous TiO2 microspheres with flower-like morphology, high specific surface area, and high- crystallinity primary crystalline-phase of anatase have been prepared through a water-in-oil emulsion synthesis route assisted by solvothermal treatment. The as-prepared powder microspheres, as well as their precursor, were characterized by various techniques. Thermogravimetry and differential thermal analysis indicated that the optimal sintering temperature of the TiO2 precursor was 550 ℃. Field emission scanning electron microscopy, laser particle size analysis, and X-ray diffractionjointly confirmed that the precursor powder with a spherical structure and main particle sizes ranging from 3 to 20 μm had the same primary crystalline-phase as the TiO2 microspheres obtained from the calcination of the precur- sor at 550 ℃ for 4 h. The specific surface area of the TiO2 microspheres was approximately 123.6 m2/g according to the Brunauer-Emmett-Teller (BET) nitrogen adsorption results. Compared with the com- mercial TiO2 powder (P25), the resulting TiO2 microspheres exhibited a higher photocatalytic activity. Based on the experimental results, a rational mechanism was proposed to elucidate the formation of the TiO2 microsoheres.
文摘Flower-like TiO2 materials, with their advantages of high specific surface area, developed pore structure, and high photocatalytic activity, have been widely used in environmental management and air purification, sterilization, and surface self-cleaning, among other areas. This paper summarizes several methods used to fabricate the flower-like TiO2 nanostructures, such as the hydrothermal, solvothermal, microemulsion, sol-gel, hydrolysis, and electrodeposition oxidation methods. In addition, the morphologies, properties, and performance of different flower-like TiO2 structures are discussed. Meanwhile, the application progresses of different flower-like TiO2 structures are also analyzed.
文摘W, N co-doped TiO2 nanoparticles were synthesized by a sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), trans- mission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-1R), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectrophotometry (DRS). The results showed that the co- doped photocatalysts were essentially uniform spherical particles with the smallest particle size of 22.5 nm. Compared to un-doped TiO2, N-TiO2 and P-25, the absorption edge of the W, N co-doped TiO2 shifted to longer wavelength and its photocatalytic activity for degradation of methyl orange (MO) under Xe-lamp (350W) was higher.
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.