In this work,well-defined 1D/1D WO3 nanorod/TiO2 nanobelt(WNR/TNB)hybrid heterostructure was fabricated by a simple electrostatic self-assembly method.The structure-property correlation was clarified by characterizing...In this work,well-defined 1D/1D WO3 nanorod/TiO2 nanobelt(WNR/TNB)hybrid heterostructure was fabricated by a simple electrostatic self-assembly method.The structure-property correlation was clarified by characterizing the crystal phases,morphologies,optical properties,photoluminescence and photocatalytic performances of the WNR/TNB heterostructures.It was demonstrated that photocatalytic performances of WNR/TNB heterostructure toward mineralization was superior to blank TNB,WNR and randomly mixed counterparts under simulated solar light irradiation,owing predominantly to the intimate interfacial contact between WNR and TNB,forming intimately integrated heterojunction,which promotes the spatial charge carriers transfer and electron relay,hence prolonging the lifetime of photogenerated electron-hole pairs.Moreover,photocatalytic mechanism was elucidated.It is anticipated that our work would provide an alternative strategy to construct diverse heterostructured photocatalysts for solar energy conversion.展开更多
以TiO2 P25纳米颗粒为原料,通过碱-水热法制备TiO2纳米带,再采用水热法成功制备出Bi2WO6/TiO2纳米带材料.利用X射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)以及透射电子显微镜(transmission ...以TiO2 P25纳米颗粒为原料,通过碱-水热法制备TiO2纳米带,再采用水热法成功制备出Bi2WO6/TiO2纳米带材料.利用X射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)以及透射电子显微镜(transmission electron microscope,TEM)分别对该材料的物相和形貌进行了分析,并研究了其在可见光下的光催化的性能和催化机理.研究结果表明:制备出的Bi2WO6纳米带通过分子间作用力成功负载在TiO2纳米带上.制备出的Bi2WO6/TiO2在可见光下具有优越的光催化性能,这归因于材料较好的光生电子-空穴分离效率以及材料特定的物理性质,不仅为光催化反应提供了丰富的活性位点,还有效促进了电子的轴向迁移率.展开更多
An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belt...An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m (BiOBr)/m (TiO2) were discussed in order to get the best photocatalytie activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism ofphotocatalytic enhancement was proposed.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21673198,21373008 and 21621091)。
文摘In this work,well-defined 1D/1D WO3 nanorod/TiO2 nanobelt(WNR/TNB)hybrid heterostructure was fabricated by a simple electrostatic self-assembly method.The structure-property correlation was clarified by characterizing the crystal phases,morphologies,optical properties,photoluminescence and photocatalytic performances of the WNR/TNB heterostructures.It was demonstrated that photocatalytic performances of WNR/TNB heterostructure toward mineralization was superior to blank TNB,WNR and randomly mixed counterparts under simulated solar light irradiation,owing predominantly to the intimate interfacial contact between WNR and TNB,forming intimately integrated heterojunction,which promotes the spatial charge carriers transfer and electron relay,hence prolonging the lifetime of photogenerated electron-hole pairs.Moreover,photocatalytic mechanism was elucidated.It is anticipated that our work would provide an alternative strategy to construct diverse heterostructured photocatalysts for solar energy conversion.
文摘以TiO2 P25纳米颗粒为原料,通过碱-水热法制备TiO2纳米带,再采用水热法成功制备出Bi2WO6/TiO2纳米带材料.利用X射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)以及透射电子显微镜(transmission electron microscope,TEM)分别对该材料的物相和形貌进行了分析,并研究了其在可见光下的光催化的性能和催化机理.研究结果表明:制备出的Bi2WO6纳米带通过分子间作用力成功负载在TiO2纳米带上.制备出的Bi2WO6/TiO2在可见光下具有优越的光催化性能,这归因于材料较好的光生电子-空穴分离效率以及材料特定的物理性质,不仅为光催化反应提供了丰富的活性位点,还有效促进了电子的轴向迁移率.
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB239300,No.2012CB720100)National Natural Science Foundation of China(No.21406164,No.21466035)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110032110037,No.20130032120019)
文摘An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m (BiOBr)/m (TiO2) were discussed in order to get the best photocatalytie activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism ofphotocatalytic enhancement was proposed.