期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Simple Method to Fabricate Au Nanoparticle-Decorated TiO2 Nanotube Arrays for Enhanced Visible Light Photocurrent 被引量:2
1
作者 陆裕华 王文桂 +1 位作者 翁雨燕 董雯 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期146-149,共4页
Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present t... Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present that Au nanoparticles are well dispersed within the wall and on the surface of the XiO2 nanotubes. Meanwhile, the morphologies of Au nanoparticles can be controlled by changing the thickness of the deposited gold film. Associ- ated with the excitation of localized surface plasmon resonances, the prepared Au nanoparticle-decorated TiO2 nanotube arrays could work as visible light responsive photocatalysts to produce a greatly enhanced photocurrent density. By varying the initial gold film thickness, such Au nanoparticle-decorated TiO2 nanotube arrays could be optimized to obtain the highest photocurrent generation efficiency in the visible and UV light regions. 展开更多
关键词 TIO As Simple Method to Fabricate Au Nanoparticle-Decorated tio2 nanotube arrays for Enhanced Visible Light Photocurrent
下载PDF
Fast Growth of Highly Ordered TiO2 Nanotube Arrays on Si Substrate under High-Field Anodization 被引量:1
2
作者 Jingnan Song Maojun Zheng +7 位作者 Bin Zhang Qiang Li Faze Wang Liguo Ma Yanbo Li Changqing Zhu Li Ma Wenzhong Shen 《Nano-Micro Letters》 SCIE EI CAS 2017年第2期3-13,共11页
Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Her... Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte. 展开更多
关键词 tio2 nanotube arrays Si substrate Anodization High field Controllable preparation
下载PDF
Synthesis and photoelectrical performance of nanoscale PbS and Bi2S3 co-sensitized on TiO2 nanotube arrays
3
作者 Fanggong Cai Min Pan +3 位作者 Yong Feng Guo Yan Yong Zhang Yong Zhao 《Journal of Modern Transportation》 2017年第1期52-57,共6页
TiO2 films have been widely applied in photo- voltaic conversion techniques. TiO2 nanotube arrays (TiO2 NAs) can be grown directly on the surface of metal Ti by the anodic oxidation method. Bi2S3 and PbS nanoparticl... TiO2 films have been widely applied in photo- voltaic conversion techniques. TiO2 nanotube arrays (TiO2 NAs) can be grown directly on the surface of metal Ti by the anodic oxidation method. Bi2S3 and PbS nanoparticles (NPs) were firstly co-sensitized on TiOa NAs (denoted as PbS/Bi2S3(n)/TiO2 NAs) by a two-step process containing hydrothermal and sonication-assisted SILAR method. When the concentration of Bi3+ is 5 mmol/L, the best photoelectrical performance was obtained under simulated solar irradiation. The short-circuit photocurrent (Jsc) and photoconversion efficiency (η) of PbS/Bi2S3(5)/TiO2 NAs electrode were 4.70 mA/cm and 1.13 %, respectively. 展开更多
关键词 Solar cells tio2 nanotube arrays BI2S3 PBS Surface photovoltage
下载PDF
Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles 被引量:4
4
作者 Piyush Kar Samira Farsinezhad +6 位作者 Najia Mahdi Yun Zhang Uchenna Obuekwe Himani Sharma Jing Shen Natalia Semagina Karthik Shankar 《Nano Research》 SCIE EI CAS CSCD 2016年第11期3478-3493,共16页
Metal nanoparticle (NP) co-catalysts on metal oxide semiconductor supports are attracting attention as photocatalysts for a variety of chemical reactions. Related efforts seek to make and use Pt-free catalysts. In t... Metal nanoparticle (NP) co-catalysts on metal oxide semiconductor supports are attracting attention as photocatalysts for a variety of chemical reactions. Related efforts seek to make and use Pt-free catalysts. In this regard, we report here enhanced CH4 formation rates of 25 and 60 μmol·g^-1·h^-1 by photocatalytic CO2 reduction using hitherto unused ZnPd NPs as well as Au and Ru NPs. The NPs are formed by colloidal synthesis and grafted onto short n-type anatase TiO2 nanotube arrays (TNAs), grown anodically on transparent glass substrates. The interfacial electric fields in the NP-grafted TiO2 nanotubes were probed by ultraviolet photoelectron spectroscopy (UPS). Au NP-grafted TiO2 nanotubes (Au-TNAs) showed no band bending, but a depletion region was detected in Ru NP-grafted TNAs (Ru-TNAs) and an accumulation layer was observed in ZnPd NP-grafted TNAs (ZnPd-TNAs). Temperature programmed desorption (TPD) experiments showed significantly greater CO2 adsorption on NP-grafted TNAs. TNAs with grafted NPs exhibit broader and more intense UV-visible absorption bands than bare TNAs. We found that CO2 photoreduction by nanoparticle-grafted TNAs was driven not only by ultraviolet photons with energies greater than the TiO2 band gap, but also by blue photons close to and below the anatase band edge. The enhanced rate of CO2 reduction is attributed to superior use of blue photons in the solar spectrum, excellent reactant adsorption, efficient charge transfer to adsorbates, and low recombination losses. 展开更多
关键词 metal nanoparticles (NPs) tio2 nanotube arrays(TNAs) colloidal synthesis band bending built-in potential photocatalytic CO2reduction semiconductorheterojunctions
原文传递
Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles 被引量:3
5
作者 S. ROHANI T. ISIMJAN A. MOHAMED H. KAZEMIAN M. SALEM T. WANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2012年第1期112-122,共11页
Among the semiconductors, titanium dioxide has been identified as an effective photocatalyst due to its abundance, low cost, stability, and superior electronic energy band structure. Highly ordered nanotube arrays of ... Among the semiconductors, titanium dioxide has been identified as an effective photocatalyst due to its abundance, low cost, stability, and superior electronic energy band structure. Highly ordered nanotube arrays of titania were produced by anodization and mild sonication. The band gap energy of the titania nanotube arrays was reduced to 2.6 eV by co-doping with Fe, C, N atoms using an electrolyte solution containing K3Fe(CN)6. The photo- conversion of phenol in a batch photoreactor increased to more than 18% based on the initial concentration of phenol by using a composite nanomaterial consisting of titania nanotube arrays and Pt/ZIF-8 nanoparticles. A layer-by- layer assembly technique for the deposition of titania nanoparticles was developed to fabricate air filters for the degradation of trace amounts of toluene in the air and preparation of superhyrophobic surfaces for oil-water separation and anti-corrosion surfaces. 展开更多
关键词 tio2 nanotube arrays and nanoparticles anodization bandgap modification layer-by-layer deposi-tion oil-water separation
原文传递
Electrochemical Preparation and Photoelectric Properties of Cu_2O-loaded TiO_2 Nanotube Arrays 被引量:3
6
作者 李光亮 梁伟 +2 位作者 XUE Jinbo LIU Yiming LIANG Xingzhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期23-28,共6页
TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoride- based solution, on which Cu20 particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solution... TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoride- based solution, on which Cu20 particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded TiO2 nanotube arrays (Cu2O-TNTs) were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. The results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2O- TNTs exhibited remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance. The I-V characteristics under visible light irradiation show a distinct plateau in the region between approximately -0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition. 展开更多
关键词 tio2 nanotube arrays Cu2O crystals anode oxidation ELECTRODEPOSITION PHOTOCURRENT
下载PDF
Photocatalytic decompositions of gaseous HCHO and methylene blue with highly ordered TiO_2 nanotube arrays 被引量:2
7
作者 Lixia Li Jing Ya +2 位作者 Fengjiao Hu Zhifeng Liu Lei E 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期740-746,共7页
The highly ordered TiO2 nanotubes (NTs) were fabricated by the anodic oxidation method. Their morphology, structure and crystalline phase were characterized by scanning electron microscopy (SEM) and X-ray diffractomet... The highly ordered TiO2 nanotubes (NTs) were fabricated by the anodic oxidation method. Their morphology, structure and crystalline phase were characterized by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The effects of morphology, specific surface area, pore structures and photo catalytic activity of the TiO2 NTs were investigated. UV-vis spectra analysis showed that its light absorption had been extended to the visible light range. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic oxidation of gaseous HCHO and MB aqueous solution. The samples had better adhesion strength in the dark and showed a higher photocatalytic activity than nanoparticles. Especially, with ultraviolet light pretreatment, the nanotubes exhibited more stable active for photocatalytic decomposition and the photodecomposition rate remained at high level after 3 cycles of the photocatalysis experiment. Thus, how the number of surface active group center dot OH increased and the mechanism for the great improvement for the photocatalytic activity are discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 tio2 nanotube arrays PHOTOCATALYSIS Visible light Ultraviolet light pretreatment
下载PDF
Efficient Photoelectrochemical Water Splitting by g-C_3N_4/TiO_2 Nanotube Array Heterostructures 被引量:7
8
作者 Changhai Liu Fang Wang +4 位作者 Jin Zhang Ke Wang Yangyang Qiu Qian Liang Zhidong Chen 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期247-259,共13页
Well-ordered TiO_2 nanotube arrays(TNTAs)decorated with graphitic carbon nitride(g-C_3N_4) were fabricated by anodic oxidization and calcination process.First, TNTAs were prepared via the anodic oxidation of Ti foil i... Well-ordered TiO_2 nanotube arrays(TNTAs)decorated with graphitic carbon nitride(g-C_3N_4) were fabricated by anodic oxidization and calcination process.First, TNTAs were prepared via the anodic oxidation of Ti foil in glycerol solution containing fluorinion and 20%deionized water. Subsequently, g-C_3N_4 film was hydrothermally grown on TNTAs via the hydrogen-bonded cyanuric acid melamine supramolecular complex. The results showed that g-C_3N_4 was successfully decorated on the TNTAs and the g-C_3N_4/TNTAs served as an efficient and stable photoanode for photoelectrochemical water splitting. The facile deposition method enables the fabrication of efficient and low-cost photoanodes for renewable energy applications. 展开更多
关键词 tio2 nanotube arrays Graphitic carbon nitride(g-C3N4) HETEROJUNCTION PHOTOELECTROCHEMICAL Water splitting
下载PDF
Enhanced Visible-Light-Induced Photoelectrocatalytic Degradation of Methyl Orange by CdS Sensitized TiO2 Nanotube Arrays Electrode 被引量:1
9
作者 姜大为 周天舒 +3 位作者 孙奇 于妍妍 施国跃 金利通 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第11期2505-2510,共6页
In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposi... In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposition method (S-CBD). The as-prepared CdS/TiO2NTs was characterized by field-emission scanning electron mi- croscopy (FE-SEM) and X-ray diffraction (XRD). The results indicated that the CdS nanoparticles were effectively deposited on the surface of TiOeNTs. The amperometric I-t curve on the CdS/TiO2NTs electrode was also presented. It was found that the photocurrent density was enhanced significantly from 0.5 to 1.85 mA/cm2 upon illumination with applied potential of 0.5 V at the central wavelength of 253.7 nm. The photoelectrocatalytic (PEC) activity of the CdS/TiO2NTs electrode was investigated by degradation of methyl orange (MO) in aqueous solution. Compared with TiO2NTs electrode, the degradation efficiencies of CdS/TiO2NTs electrode increased from 78% to 99.2% under UV light in 2 h, and from 14% to 99.2% under visible light in 3 h, which was caused by effective separation of the electrons and holes due to the effect of CdS, hence inhibiting the recombination of electron/hole pairs of TiO2NTs. 展开更多
关键词 CdS/tio2 nanotube arrays electrode photoelectrocatalytic (PEC) dye degradation methyl orange
原文传递
Vertically oriented TiO_2 nanotube arrays with different anodization times for enhanced boiling heat transfer 被引量:7
10
作者 XU Jia YANG MingJie +1 位作者 XU JinLiang JI XianBing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第8期2184-2190,共7页
Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays(NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolyte... Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays(NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolytes was adopted to fabricate three types of TiO2 NTAs distinguished by their anodization time.Compared to the bare Ti surface,the incipient boiling wall superheat on the TiO2 NTAs was decreased by 11 K.Both the critical heat flux and heat transfer coefficient of pool boiling on the TiO2 NTAs were higher than those from boiling on a bare Ti surface.The measured maximum critical heat flux and heat transfer coefficient values were 186.7 W/cm2 and 6.22 W/cm2K,respectively.Different performances for the enhancement of heat transfer by the three types of TiO2 NTAs were attributed to the different degrees of deformation in the nanostructure during boiling.Long-term performance of the nanomaterial-coated surfaces for enhanced pool boiling showed degradation of the TiO2 NTAs prepared with an anodization time of 3 hours. 展开更多
关键词 tio2 nanotube arrays pool boiling heat transfer enhancement deformation of nanostructure
原文传递
Novel Photodetectors Based on Double-Walled Carbon Nanotube Film/TiO2 Nanotube Array Heterodimensional Contacts 被引量:5
11
作者 Mingjie Yang Jia-Lin Zhu +1 位作者 Wei Liu Jia-Lin Sun 《Nano Research》 SCIE EI CAS CSCD 2011年第9期901-907,共7页
A new kind of photodetector based on a double-walled carbon nanotube (DWCNT) film and a TiO2 nanotube array with hetrodimensional non-ohmic contacts has been fabricated. Due to the dimensionality difference effect, ... A new kind of photodetector based on a double-walled carbon nanotube (DWCNT) film and a TiO2 nanotube array with hetrodimensional non-ohmic contacts has been fabricated. Due to the dimensionality difference effect, the DWCNT film/TiO2 nanotube array photodetector exhibits a much higher photocurrent-to-dark current ratio and photoresponse relative to an Au film/TiO2 nanotube array device, even at small bias voltage. The photocurrent-to-dark current ratio reached four orders of magnitude and a high photoresponse of 2467 A/W was found upon irradiation at 340 nm. Furthermore, the photosensitive regions could be extended into the visible range. The photocurrent-to-dark current ratio reached approximately three orders of magnitude upon irradiation at 532 nm, where the photon energy is much lower than the band gap of TiO2. 展开更多
关键词 PHOTODETECTORS double-wailed carbon nanotube (DWCNT) films tio2 nanotube arrays heterodimensional contacts
原文传递
Nonsolvent-induced phase separation-derived TiO_(2) nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries 被引量:3
12
作者 Zhi-Jia Zhang Jun Zhao +10 位作者 Zhi-Jun Qiao Jia-Min Wang Shi-Hao Sun Wen-Xing Fu Xi-Yuan Zhang Zhen-Yang Yu Yu-Hai Dou Jian-Li Kang Ding Yuan Yue-Zhan Feng Jian-Min Ma 《Rare Metals》 SCIE EI CAS CSCD 2021年第2期393-399,共7页
TiO_(2) nanotube arrays,growing on three-dimensional(3 D)porous Ti membrane,were synthesized using a facile nonsolvent-induced phase separation and anodization process.The length of those three-dimensional nanotube ar... TiO_(2) nanotube arrays,growing on three-dimensional(3 D)porous Ti membrane,were synthesized using a facile nonsolvent-induced phase separation and anodization process.The length of those three-dimensional nanotube arrays could be tuned by prolonging the anodizing time.When the anodizing time is 8 h,the three-dimensional TiO_(2) nanotube arrays/porous Ti electrode exhibits well cycling stability and ultra-high specific capacity,which is used in lithium-ion batteries,attributed to the high utilization rate of the substrate and the high growth intensity of the active materials.Three-dimensional TiO_(2) nano tube arrays/porous Ti electrode,at 100μA·cm^(-2) with 8 h anodizing time,shows a typical discharge plateau at 1.78 V and exhibits the specific capacity with 2126.7μAh·cm^(-2),The novel nanotube arrays@3 D porous architecture effectively shortens the electron/ion transmission path,which could pave way for optimizing the design of highperformance anode materials for next-generation energy storage system. 展开更多
关键词 tio2 nanotube arrays Nonsolvent-induced phase separation Anodization ANODE Lithium-ion battery
原文传递
Highly-ordered dye-sensitized TiO_2 nanotube arrays film used for improving photoelectrochemical electrodes 被引量:3
13
作者 XIONG BiTao WANG ChangRong +3 位作者 LUO JunYan CHEN BaoXin ZHOU BaoXue ZHU ZhiYan 《Science China Chemistry》 SCIE EI CAS 2013年第1期101-105,共5页
Thin titanium oxide nanotube arrays (TNAs) films were synthesized by anodization of titanium foil in an aqueous dimethyl sulfoxide solution using a platinum foil counter electrode.TNAs up to 6.8 μm in length,120 nm i... Thin titanium oxide nanotube arrays (TNAs) films were synthesized by anodization of titanium foil in an aqueous dimethyl sulfoxide solution using a platinum foil counter electrode.TNAs up to 6.8 μm in length,120 nm in inner pore diameter,and 20 nm in wall thickness were obtained by 40 V potentials anodization for 24 h.Their microstructures and surface morphologies were characterized by XRD,TEM,SAED and UV-vis spectroscopy.The photoelectrochemical properties of as-prepared unsensitized and dye-sensitized TNAs electrodes were examined under simulated solar light (AM 1.5,100 mW/cm2) illumination.The results showed that the photocurrent of the dye-sensitized TNAs electrodes reached 6.9 mA/cm2,which was 6 times more than that of the dye-sensitized TiO2 nanoparticles (TNPs) electrodes.It implied that the electron transport process and the charge recombination suppression within TNAs electrodes were much more favorable in comparison with that in the TNPs electrodes.Electrodes applying such kind of titania nanotubes will have a potential to further enhance the efficiencies of TNAs-based dye-sensitized solar cells. 展开更多
关键词 tio2 nanotube arrays dye-sensitized solar cells anodization PHOTOELECTROCHEMISTRY ELECTRODE
原文传递
Plasmonic-enhanced electrochemical detection of volatile biomarkers with gold functionalized TiO_2 nanotube arrays 被引量:1
14
作者 Dhiman Bhattacharyya Pankaj Kumar +2 位作者 York R.Smith Swomitra K.Mohanty Mano Misra 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第6期905-913,共9页
Titania nanotubular arrays (TNA) synthesized via electrochemical anodization is a stable and versatile material, widely studied for photocatalytic and sensing applications, whereas nano-sized gold particles are a kn... Titania nanotubular arrays (TNA) synthesized via electrochemical anodization is a stable and versatile material, widely studied for photocatalytic and sensing applications, whereas nano-sized gold particles are a known plasmonic material. Semiconductor-metal nanocomposites in isolated, embedded, or encapsulated form, when irradiated with proper light frequency can exhibit localized surface plasmon resonance (LSPR) effect. This effect can result in improved light adsorption and electrical properties of a material. In this study, we report the enhanced visible light photo-response of LSPR induced volatile organic biomarker vapor sensing at room temperature using a Au-embedded TNA electrochemical sensor. Two mechanisms are proposed. One based on classical physics (band theory), which explains operation under non-irradiated conditions. The second mechanism is based on the coupling of classical and quantum physics (molecular orbitals), and explains sensor operation under irradiated conditions. 展开更多
关键词 tio2 nanotube arrays Au particles Surface plasmon resonance Electrochemical sensor
原文传递
Controllable synthesis of well-ordered TiO_2 nanotubes in a mixed organic electrolyte for high-efficiency photocatalysis 被引量:3
15
作者 WANG Chao CHEN Da +5 位作者 PING GuangXing LIU Shu HUANG XiaNi HUANG YueXiang SHU KangYing LI JingHong 《Science China Chemistry》 SCIE EI CAS 2012年第11期2373-2380,共8页
Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and pho... Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and photocatalytic properties of TNAs were characterized by using TEM, SEM, XRD and photodegradation of methylene blue. It was found that the morphology and structure of TNAs could be significantly influenced by the anodization time and applied voltage. The obtained tube length was found to be proportional to anodization time, and the calculated growth rate of nanotubes was 0.6 m/h. The microstructure analysis demonstrated that the diameter and thickness of the nanotubes increased with the increase of anodization voltage. The growth mechanism of TNAs was also proposed according to the observed relationship between current density and time during anodization. As expected, the obtained TNAs showed a higher photocatalytic activity than the commercial TiO 2 P25 nanoparticles. 展开更多
关键词 tio2 nanotube arrays (TNAs) anodization organic electrolytes PHOTOCATALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部