期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced visible-light photocatalytic oxidation capability of carbon-doped TiO_2 via coupling with fly ash 被引量:13
1
作者 Ning An Yuwei Ma +3 位作者 Juming Liu Huiyan Ma Jucai Yang Qiancheng Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第12期1890-1900,共11页
A carbon‐doped TiO2/fly ash support(C‐TiO2/FAS)composite photocatalyst was successfully synthesized through sol impregnation and subsequent carbonization.The carbon dopants were derived from the organic species gene... A carbon‐doped TiO2/fly ash support(C‐TiO2/FAS)composite photocatalyst was successfully synthesized through sol impregnation and subsequent carbonization.The carbon dopants were derived from the organic species generated during the synthesis of the C‐TiO2/FAS composite.A series of analytical techniques,such as scanning electron microscopy(SEM),attenuated total reflection‐Fourier transform infrared(ATR‐FTIR)spectroscopy,X‐ray photoelectron spectroscopy(XPS),and ultraviolet‐visible diffuse reflectance spectroscopy(UV‐Vis DRS),were used to characterize the properties of the prepared samples.The results indicated that C‐TiO2 was successfully coated on the FAS surface.Coupling between C‐TiO2 and FAS resulted in the formation of Si–O–C and Al–O–Ti bonds at their interface.The formation of Si–O–C and Al–O–Ti bonds gave rise to a positive shift of the valence band edge of C‐TiO2 and enhanced its oxidation capability of photogenerated holes as well as photodegradation efficiency of methyl orange.Moreover,the C‐TiO2/FAS photocatalyst exhibited favorable reusability and separability.This work may provide a new route for tuning the electronic band structure of TiO2. 展开更多
关键词 fly ash tio2 Carbon doping Visible‐light photocatalysis Photocatalytic oxidation
下载PDF
Synthesis of CeO_2/fly ash cenospheres composites as novel photocatalysts by modified pyrolysis process 被引量:2
2
作者 张进 王冰 +3 位作者 崔皓 李闯 翟建平 李琴 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第12期1120-1125,共6页
A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning... A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and diffuse reflection spectra(DRS) techniques.XRD results indicated that the CeO2 film coated on cenospheres was a face-centered cubic structure.SEM images confirmed that the CeO2 film was relatively compact.XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 film coated on FACs substrate.The bandgap of the composite was narrower compared with the pure CeO2.The as-prepared material exhibited good photocatalytic activity for the decolorization of methylene blue(MB) under visible light irradiation, and the first-order reaction rate constant(k) of 0.0028 min–1 for CeO2/FACs composite was higher than 0.0015 min–1 of pure CeO2.The fact that they floated on water meant that CeO2/FACs composites were easily recovered from water by filtration after the reaction.The recycling test revealed that the composites were quite stable during the MB photocatalytic decolorization.The CeO2/ FACs catalyst was therefore promising for practical use in the degradation of pollutants or water cleanup. 展开更多
关键词 CeO2 fly ash cenospheres(FACs) photocatalysis modified pyrolysis process rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部