A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of app...A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of appropriate amounts of Ce into the catalyst was beneficial to the formation of sole tetragonal ZrO2 and effectively prevented from the formation of monoclinic ZrO〉 and restrained the loss of sulfated species. XRD revealed the presence of tetragonal Ce0.16Zr0.84O2phase in the case of S2O8^2-/ZrO2-CeO2 calcined above 500 ℃. Catalytic activities of S2O8^2-/ZrO2-CeO2 for the esterification of lactic acid with n-butanol was studied. The results showed that the optimum conditions were as follows: calcination temperature of the catalyst 600 ℃, n(lactic acid):n(n-butyl alcohol)=1.0:3.0, w(S2O8^2-/ZrO2- CeO2)=12.0%, reaction temperature 145 ℃, and reaction time 2 h. The esterification efficiency of lactic acid was about 96.6%.展开更多
In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation me...In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.展开更多
A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditiona...A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditional V2O5/TiO2 and V2O5-MoO3/TiO2 catalysts, the V2O5/TiO2-PILC catalyst exhibited a higher activity and better SO2 and H2O resistance in the NH3-SCR reaction. Characterization using TPD, in situ DRIFT and XPS showed that surface sulfate and/or sulfite species and ionic SO4^(2-)species were formed on the catalyst in the presence of SO2. The ionic SO4^(2-) species on the catalyst surface was one reason for deactivation of the catalyst in SCR. The formation of the ionic SO4^(2-) species was correlated with the amount of surface adsorbed oxygen species. Less adsorbed oxygen species gave less ionic SO4^(2-) species on the catalyst.展开更多
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ...A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.展开更多
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/TiO2 catalysts prepared by a liquid-phase chemical reduction method. The catalysts were characterized by inductively coupled plasm...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/TiO2 catalysts prepared by a liquid-phase chemical reduction method. The catalysts were characterized by inductively coupled plasma (ICP), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and temperature-programmed reduction (TPR). Results show that the titania structure has favorable influence on physio-chemical and catalytic properties of Ni/TiO2 catalysts. Compared to commercial Raney nickel, the catalytic activity of Ni/TiO2 catalyst is much superior, irrespective of the titania structure. The catalytic activity of anatase titania supported nickel catalyst Ni/TiO2(A) is higher than that of rutile titania supported nickel catalyst Ni/TiO2(R), possibly because the reduction of nickel oxide to metallic nickel for Ni/TiO2(A) is easier than that for Ni/TiO2(R) at similar reaction conditions.展开更多
A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐W...A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.展开更多
NOx emission abatement catalysts V 2O 5 supported on various TiO 2 including anatase, rutile and mixture of both were investigated with various physico\|chemical measurements such as BET, NH\-3\|TPD, NARP, XRD and ...NOx emission abatement catalysts V 2O 5 supported on various TiO 2 including anatase, rutile and mixture of both were investigated with various physico\|chemical measurements such as BET, NH\-3\|TPD, NARP, XRD and so on, and the effect of TiO\-2 surface properties on the SCR(selective catalytic reduction) activity of V\-2O\-5/TiO\-2 catalysts was studied. It was found that the TiO\-2 surface properties had strong affect on the SCR activity of V\-2O\-5/TiO\-2 catalysts. The stronger acidic property resulted in the higher exposure of active sites as well as the higher SCR activity.展开更多
The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3...The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3-SCR) reactions. Results showed that the manganese carbonate (MC) precursor caused mainly Mn2O3, while the manganese nitrate (MN) precursor resulted primarily in MnO2 and the manganese sulfate (MS) precursor was unchanged. The manganese acetate (MA) precursor leaded obtaining a mixture of Mn2O3 and Mn304. NOn conversion decreased in the following order: MA/TiO2 〉 MC/TiO2 〉 MN/TiO2 〉 MS/TiO2 〉 P25, with a calcination temperature of 773 K in air. Catalysts that were prepared by MA and calcined in oxygen performed strong interaction between Ti and Mn, while MnTiO3 was observed. Compared to the catalysts calcined in nitrogen, those calcined in oxygen had larger diameter and smaller surface area and pore. Catalysts that were prepared by MA and calcined in nitrogen tended to gain higher denitration rates than those in air, since they could be prepared with significant specific surface areas. NO., conversion decreased with calcination atmospheres: Nitrogen〉 Air〉 Oxygen. Meanwhile, amorphous Mn2O3 turned into crystalline Mn2O3, when the temperatures increased from 673 to 873 K.展开更多
In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including...In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.展开更多
Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA...Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA, XRD, H2-TPR and XPS. The catalytic activity of the CuO/TiO2-SnO2 catalysts was markedly depended on the loading of CuO, and the optimum CuO loading was 8 wt.% (Tloo = 80 ℃). The CuO/TiO2-SnO2 catalysts exhibited much higher catalytic activity than the CuO/TiO2 and CuO/SnO2 catalysts. H2-TPR result indicated that a large amount of CuO formed the active site for CO oxidation in 8 wt.% CuO/TiO2-SnO2 catalyst.展开更多
IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and character...IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and characterized by means of structural,surface analytical and electrochemical techniques.Nb doping of titania significantly increased the surface area of the support from 145(TNTs)to 260 m2g-1(Nb-TNTs),which was significantly higher than those of the Nb-doped titania supports previously reported in the literature.The surface analytical techniques showed good dispersion of the catalysts onto the supports.The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV)species,the suitable form to behave as a donor introducing free electrons to the conduction band of titania.The redox transitions of the cyclic voltammograms,in agreement with the XPS results,were found to be reversible.Despite the supported materials presented bigger crystallite sizes than the unsupported ones,the total number of active sites of the former was also higher due to their better catalyst dispersion.Considering the outer and the total charges of the cyclic voltammograms in the range 0.1–1.4 V,stability and electrode potentials at given current densities,the preferred catalyst was Ir O2 supported on the Nb-TNTs.The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping,thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER.The good dispersion of IrO2,high specific surface area of the Nb-doped supports,accessibility of the electroactive centers,increased stability due to Nb doping and electron donor properties of the Nb(IV)oxide species were considered the main reasons for its good performance.展开更多
The influence of calcination temperature on the structure and catalytic behavior of Ni/TiO2-SiO2 catalyst, for CO2 reforming of methane to synthesis gas under atmospheric pressure, was investigated. The results showed...The influence of calcination temperature on the structure and catalytic behavior of Ni/TiO2-SiO2 catalyst, for CO2 reforming of methane to synthesis gas under atmospheric pressure, was investigated. The results showed that the Ni/TiO2-SiO2 catalyst calcined at 700 ℃ had high and stable activity while the catalysts calcined at 550 and 850 ℃ had low and unstable activity. Depending on the calcination temperature, one, two, or three of the following Ni-containing species, NiO, Ni2.44Ti0.72Si0.07O4, and NiTiO3 were identified by combining the temperature programmed reduction (TPR) and X-ray diffraction (XRD) results. Their reducibility decreased in the sequence: NiO〉Ni2.44Ti0.72Si0.07O4〉NiTiO3. It suggests that high and stable activities observed over the Ni/TiO2-SiO2 catalyst calcined at 700 ~C were induced by the formation of Ni2.44Ti0.72Si0.07O4 and smaller NiO species crystallite size.展开更多
基金supported by the Science and Technique Foundation of Shaaxi Province of China (2008K07-32)the Foundation of Shaanxi Educa- tional Committee of China (08JK228)the Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of appropriate amounts of Ce into the catalyst was beneficial to the formation of sole tetragonal ZrO2 and effectively prevented from the formation of monoclinic ZrO〉 and restrained the loss of sulfated species. XRD revealed the presence of tetragonal Ce0.16Zr0.84O2phase in the case of S2O8^2-/ZrO2-CeO2 calcined above 500 ℃. Catalytic activities of S2O8^2-/ZrO2-CeO2 for the esterification of lactic acid with n-butanol was studied. The results showed that the optimum conditions were as follows: calcination temperature of the catalyst 600 ℃, n(lactic acid):n(n-butyl alcohol)=1.0:3.0, w(S2O8^2-/ZrO2- CeO2)=12.0%, reaction temperature 145 ℃, and reaction time 2 h. The esterification efficiency of lactic acid was about 96.6%.
基金The National Basic Research Program (973) of China (No. 2004CB418505) the Foundation for Excellent Youth of HeilongjiangProvince
文摘In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.
基金supported by the National Natural Science Foundation of China(21277009,21577005)~~
文摘A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditional V2O5/TiO2 and V2O5-MoO3/TiO2 catalysts, the V2O5/TiO2-PILC catalyst exhibited a higher activity and better SO2 and H2O resistance in the NH3-SCR reaction. Characterization using TPD, in situ DRIFT and XPS showed that surface sulfate and/or sulfite species and ionic SO4^(2-)species were formed on the catalyst in the presence of SO2. The ionic SO4^(2-) species on the catalyst surface was one reason for deactivation of the catalyst in SCR. The formation of the ionic SO4^(2-) species was correlated with the amount of surface adsorbed oxygen species. Less adsorbed oxygen species gave less ionic SO4^(2-) species on the catalyst.
基金supported by the National Natural Science Foundation of China (Grant No. 51078185)
文摘A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.
基金Supported by the National Basic Research Program (No.2003CB615702) and the National Natural Science Foundation of Chin(No.20436030).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/TiO2 catalysts prepared by a liquid-phase chemical reduction method. The catalysts were characterized by inductively coupled plasma (ICP), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and temperature-programmed reduction (TPR). Results show that the titania structure has favorable influence on physio-chemical and catalytic properties of Ni/TiO2 catalysts. Compared to commercial Raney nickel, the catalytic activity of Ni/TiO2 catalyst is much superior, irrespective of the titania structure. The catalytic activity of anatase titania supported nickel catalyst Ni/TiO2(A) is higher than that of rutile titania supported nickel catalyst Ni/TiO2(R), possibly because the reduction of nickel oxide to metallic nickel for Ni/TiO2(A) is easier than that for Ni/TiO2(R) at similar reaction conditions.
基金supported by the National Natural Science Foundation of China(21876168,21507130)the Key Projects for Common Key Technology Innovation in Key Industries in Chongqing(cstc2016zdcy-ztzx0020-01)+2 种基金the Chongqing Science&Technology Commission(cstc2016jcyjA0070,cstckjcxljrc13)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University(1456029)the Graduate Innovation Project of Chongqing Technology and Business University(yjscxx201803-028-22)~~
文摘A series of V2O5‐WO3/TiO2‐ZrO2,V2O5‐WO3/TiO2‐CeO2,and V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalysts were synthesized to improve the selective catalytic reduction(SCR)performance and the K‐poisoning resistance of a V2O5‐WO3/TiO2 catalyst.The physicochemical properties were investigated by using XRD,BET,NH3‐TPD,H2‐TPR,and XPS,and the catalytic performance and K‐poisoning resistance were evaluated via a NH3‐SCR model reaction.Ce^4+and Zr^4+co‐doping were found to enhance the conversion of NOx,and exhibit the best K‐poisoning resistance owing to the largest BET‐specific surface area,pore volume,and total acid site concentration,as well as the minimal effects on the surface acidity and redox ability from K poisoning.The V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst also presents outstanding H2O+SO2 tolerance.Finally,the in situ DRIFTS reveals that the NH3‐SCR reaction over the V2O5‐WO3/TiO2‐CeO2‐ZrO2 catalyst follows an L‐H mechanism,and that K poisoning does not change the reaction mechanism.
文摘NOx emission abatement catalysts V 2O 5 supported on various TiO 2 including anatase, rutile and mixture of both were investigated with various physico\|chemical measurements such as BET, NH\-3\|TPD, NARP, XRD and so on, and the effect of TiO\-2 surface properties on the SCR(selective catalytic reduction) activity of V\-2O\-5/TiO\-2 catalysts was studied. It was found that the TiO\-2 surface properties had strong affect on the SCR activity of V\-2O\-5/TiO\-2 catalysts. The stronger acidic property resulted in the higher exposure of active sites as well as the higher SCR activity.
基金Funded by the National "Twelfth Five-Year" Plan for Science&Technology Support of China(No.2011BAE29B02))
文摘The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3-SCR) reactions. Results showed that the manganese carbonate (MC) precursor caused mainly Mn2O3, while the manganese nitrate (MN) precursor resulted primarily in MnO2 and the manganese sulfate (MS) precursor was unchanged. The manganese acetate (MA) precursor leaded obtaining a mixture of Mn2O3 and Mn304. NOn conversion decreased in the following order: MA/TiO2 〉 MC/TiO2 〉 MN/TiO2 〉 MS/TiO2 〉 P25, with a calcination temperature of 773 K in air. Catalysts that were prepared by MA and calcined in oxygen performed strong interaction between Ti and Mn, while MnTiO3 was observed. Compared to the catalysts calcined in nitrogen, those calcined in oxygen had larger diameter and smaller surface area and pore. Catalysts that were prepared by MA and calcined in nitrogen tended to gain higher denitration rates than those in air, since they could be prepared with significant specific surface areas. NO., conversion decreased with calcination atmospheres: Nitrogen〉 Air〉 Oxygen. Meanwhile, amorphous Mn2O3 turned into crystalline Mn2O3, when the temperatures increased from 673 to 873 K.
文摘In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.
基金supported by the National Natural Science Foundation of China (20771061 and 20871071)the 973 Program (2005CB623607)Science and Technology Commission Foundation of Tianjin (08JCYBJC00100 and 09JCYBJC03600)
文摘Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA, XRD, H2-TPR and XPS. The catalytic activity of the CuO/TiO2-SnO2 catalysts was markedly depended on the loading of CuO, and the optimum CuO loading was 8 wt.% (Tloo = 80 ℃). The CuO/TiO2-SnO2 catalysts exhibited much higher catalytic activity than the CuO/TiO2 and CuO/SnO2 catalysts. H2-TPR result indicated that a large amount of CuO formed the active site for CO oxidation in 8 wt.% CuO/TiO2-SnO2 catalyst.
文摘IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and characterized by means of structural,surface analytical and electrochemical techniques.Nb doping of titania significantly increased the surface area of the support from 145(TNTs)to 260 m2g-1(Nb-TNTs),which was significantly higher than those of the Nb-doped titania supports previously reported in the literature.The surface analytical techniques showed good dispersion of the catalysts onto the supports.The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV)species,the suitable form to behave as a donor introducing free electrons to the conduction band of titania.The redox transitions of the cyclic voltammograms,in agreement with the XPS results,were found to be reversible.Despite the supported materials presented bigger crystallite sizes than the unsupported ones,the total number of active sites of the former was also higher due to their better catalyst dispersion.Considering the outer and the total charges of the cyclic voltammograms in the range 0.1–1.4 V,stability and electrode potentials at given current densities,the preferred catalyst was Ir O2 supported on the Nb-TNTs.The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping,thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER.The good dispersion of IrO2,high specific surface area of the Nb-doped supports,accessibility of the electroactive centers,increased stability due to Nb doping and electron donor properties of the Nb(IV)oxide species were considered the main reasons for its good performance.
文摘The influence of calcination temperature on the structure and catalytic behavior of Ni/TiO2-SiO2 catalyst, for CO2 reforming of methane to synthesis gas under atmospheric pressure, was investigated. The results showed that the Ni/TiO2-SiO2 catalyst calcined at 700 ℃ had high and stable activity while the catalysts calcined at 550 and 850 ℃ had low and unstable activity. Depending on the calcination temperature, one, two, or three of the following Ni-containing species, NiO, Ni2.44Ti0.72Si0.07O4, and NiTiO3 were identified by combining the temperature programmed reduction (TPR) and X-ray diffraction (XRD) results. Their reducibility decreased in the sequence: NiO〉Ni2.44Ti0.72Si0.07O4〉NiTiO3. It suggests that high and stable activities observed over the Ni/TiO2-SiO2 catalyst calcined at 700 ~C were induced by the formation of Ni2.44Ti0.72Si0.07O4 and smaller NiO species crystallite size.