One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT...One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.展开更多
Precursor of nanocrystalline Zno.sNio.sFe2O4 was obtained by grinding mixture of ZnSO4.7H2O, NiSO4.6H2O, FeSO4.7H2O, and Na2CO3.10H2O under the condition of suffactant polyethylene glycol (PEG)-400 being present at ...Precursor of nanocrystalline Zno.sNio.sFe2O4 was obtained by grinding mixture of ZnSO4.7H2O, NiSO4.6H2O, FeSO4.7H2O, and Na2CO3.10H2O under the condition of suffactant polyethylene glycol (PEG)-400 being present at room temperature, washing the mixture with water to remove soluble inorganic salts and drying it at 373 K. The spinel Zn0.5Ni0.5Fe2O4 was obtained via calcining precursor above 773 K. The precursor and its calcined products were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FF-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The result showed that Zn0.sNio.sFe204 obtained at 1073 K had a saturation magnetization of 74 A.mLkg-1. Kinetics of the crystallization process of Zn0.5Ni0.5Fe2O4 was studied using DSC technique, and kinetic parameters were determined by Kissinger equation and Moynihan et al. equation. The value of the activation energy associated with the crystallization process of Zr0.5Ni0.5Fe2O4 is 220.89 kJ-mol-1. The average value of the Avrami exponent, n, is equal to 1.59±0.13, which suggests that crystallization process of Zn0.5Ni0.5Fe2O4 is the random nucleation and growth of nuclei reaction.展开更多
Silver (I) was removed from aqueous environment by aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles.The adsorbent was characterized by several methods including X-ray diffraction (XRD), scanning el...Silver (I) was removed from aqueous environment by aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles.The adsorbent was characterized by several methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), BETisotherm, vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FT-IR). To determine the absorptionof silver (I) by this adsorbent, different pH values (2?7), adsorbent dose (0.01?0.5 g), concentrations of Ag+ (50, 100, 200, 300, 500,700 and 1000 mg/L) and exposure time (5?100 min) were experimented. The highest removal efficiency of Ag+ was achieved underoptimum condition (30 min and pH=5). The optimum adsorbent dose was 0.20 g (in 50 mL of 100 mg/L Ag+ solution), whichachieved a removal efficiency of 98.3%. The maximum monolayer adsorption capacity based on the Langmuir isotherm is243.90 mg/g. Characterization results revealed that specific surface area and porous volume were 814.23 m2/g and 0.726 cm3/g,respectively. The experimental data were fitted well with the Langmuir and Freundlich isotherm models. Synthesized adsorbent has desired surface area and adsorptive capacity for silver (I) adsorption in aquatic environment.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50674048)Research Fund for the Doctoral Program of Higher Education of China(No.20103227110006)
文摘One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.
基金financially supported by the National Natural Science Foundation of China (No.21161002)the Guangxi Science and Technology Agency Research Item,China (No.0992001-5)
文摘Precursor of nanocrystalline Zno.sNio.sFe2O4 was obtained by grinding mixture of ZnSO4.7H2O, NiSO4.6H2O, FeSO4.7H2O, and Na2CO3.10H2O under the condition of suffactant polyethylene glycol (PEG)-400 being present at room temperature, washing the mixture with water to remove soluble inorganic salts and drying it at 373 K. The spinel Zn0.5Ni0.5Fe2O4 was obtained via calcining precursor above 773 K. The precursor and its calcined products were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FF-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The result showed that Zn0.sNio.sFe204 obtained at 1073 K had a saturation magnetization of 74 A.mLkg-1. Kinetics of the crystallization process of Zn0.5Ni0.5Fe2O4 was studied using DSC technique, and kinetic parameters were determined by Kissinger equation and Moynihan et al. equation. The value of the activation energy associated with the crystallization process of Zr0.5Ni0.5Fe2O4 is 220.89 kJ-mol-1. The average value of the Avrami exponent, n, is equal to 1.59±0.13, which suggests that crystallization process of Zn0.5Ni0.5Fe2O4 is the random nucleation and growth of nuclei reaction.
基金the Islamic Azad University-Bandar Abbas Branch for financial support
文摘Silver (I) was removed from aqueous environment by aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles.The adsorbent was characterized by several methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), BETisotherm, vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FT-IR). To determine the absorptionof silver (I) by this adsorbent, different pH values (2?7), adsorbent dose (0.01?0.5 g), concentrations of Ag+ (50, 100, 200, 300, 500,700 and 1000 mg/L) and exposure time (5?100 min) were experimented. The highest removal efficiency of Ag+ was achieved underoptimum condition (30 min and pH=5). The optimum adsorbent dose was 0.20 g (in 50 mL of 100 mg/L Ag+ solution), whichachieved a removal efficiency of 98.3%. The maximum monolayer adsorption capacity based on the Langmuir isotherm is243.90 mg/g. Characterization results revealed that specific surface area and porous volume were 814.23 m2/g and 0.726 cm3/g,respectively. The experimental data were fitted well with the Langmuir and Freundlich isotherm models. Synthesized adsorbent has desired surface area and adsorptive capacity for silver (I) adsorption in aquatic environment.