The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed...The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.展开更多
This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetat...This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.展开更多
The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmissio...The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
Conventional cathode material (LiCoO2) was modified by coating with a thin layer of La2O3/Li2O/TiO2 for improving its performance for lithium ion battery. The morphology and structure of the modified cathode materia...Conventional cathode material (LiCoO2) was modified by coating with a thin layer of La2O3/Li2O/TiO2 for improving its performance for lithium ion battery. The morphology and structure of the modified cathode material was characterized by SEM, XRD, and Auger electron spectroscopy. The performance of the cells with the modified cathode material was examined, including the cycling stability, the diffusion coefficient under different voltages, and the C-rate discharge. The results showed that the cell composed of the coated cathode material discharged at a large current density, and possesses a stable cycle performance in the range from 3.0 to 4.4 V. It was explained that the rate of Li ion diffusion increased in the cell while using La2O3/Li2O/TiO2-coated LiCoO2 as the cathode and the coating layer may act as a faster ion conductor (La2O3/Li2O/TiO2).展开更多
Commercial cathode material (LiCoO2) was modified by coating with a thin layer of SrO/Li2O/La2O3/Ta2O5/TiO2 for improving its performance in lithium ion battery. The morphology and structure of the modified cathode ...Commercial cathode material (LiCoO2) was modified by coating with a thin layer of SrO/Li2O/La2O3/Ta2O5/TiO2 for improving its performance in lithium ion battery. The morphology and structure of the modified cathode material were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The performance including cycling stability, diffusion coefficient under different voltage, C-rate discharge of the batteries with this modified cathode material was examined. The results showed that the battery with the coated cathode material could discharge at a large current density, and it possessed a stable cycle performance in the range from 3.0 V to 4.2 V. It was explained that the rate of Li ion diffusion increased in the batteries using SrO/Li2O/La2O3/Ta2O5/TiO2-coated LiCoO2 as the cathode and the coated layer could act as a fast ion conductor (SrO/Li2O/La2O3/Ta2O5/TiO2) and as a protecting shell to prevent LiCoO2particles from being attacked by the acidic electrolyte.展开更多
TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precu...Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.展开更多
文摘The influence of cathodic pulse parameters was evaluated on plasma electrolytic oxidation(PEO)coatings grown on 7075 aluminum alloy in a silicate-based electrolyte containing potassium titanyl oxalate(PTO)using pulsed bipolar waveforms with various cathodic duty cycles and cathodic current densities.The coatings were characterized by SEM,EDS,and XRD.EIS was applied to investigate the electrochemical properties.It was observed that the increase of cathodic duty cycle and cathodic current density from 20%and 6 A/dm^(2) to 40%and 12 A/dm^(2) enhances the growth rate of the inner layer from 0.22 to 0.75μm/min.Adding PTO into the bath showed a fortifying effect on influence of the cathodic pulse and the mentioned change of cathodic pulse parameters,resulting in an increase of the inner layer growth rate from 0.25 to 1.10μm/min.Based on EDS analysis,Si and Ti were incorporated dominantly in the upper parts of the coatings.XRD technique merely detectedγ-Al_(2)O_(3),and there were no detectable peaks related to Ti and Si compounds.However,the EIS results confirmed that the incorporation of Ti^(4+)into alumina changed the electronic properties of the coating.The coatings obtained from the bath containing PTO using the bipolar waveforms with a cathodic duty cycle of 40%and current density values higher than 6 A/dm^(2) showed highly appropriate electrochemical behavior during 240 d of immersion due to an efficient repairing mechanism.Regarding the effects of studied parameters on the coating properties,the roles of cathodic pulse parameters and PTO in the PEO process were highlighted.
文摘This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.
文摘The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
基金Key Program Project of Natural Science Foundation of Guangdong Province (06105562)
文摘Conventional cathode material (LiCoO2) was modified by coating with a thin layer of La2O3/Li2O/TiO2 for improving its performance for lithium ion battery. The morphology and structure of the modified cathode material was characterized by SEM, XRD, and Auger electron spectroscopy. The performance of the cells with the modified cathode material was examined, including the cycling stability, the diffusion coefficient under different voltages, and the C-rate discharge. The results showed that the cell composed of the coated cathode material discharged at a large current density, and possesses a stable cycle performance in the range from 3.0 to 4.4 V. It was explained that the rate of Li ion diffusion increased in the cell while using La2O3/Li2O/TiO2-coated LiCoO2 as the cathode and the coating layer may act as a faster ion conductor (La2O3/Li2O/TiO2).
基金supported by the Natural Science Foundation of Guangdong Province,China (06105562)the Foundation of Manyang Bureau of Sci-ence and Technology,China (07Y003-1)
文摘Commercial cathode material (LiCoO2) was modified by coating with a thin layer of SrO/Li2O/La2O3/Ta2O5/TiO2 for improving its performance in lithium ion battery. The morphology and structure of the modified cathode material were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The performance including cycling stability, diffusion coefficient under different voltage, C-rate discharge of the batteries with this modified cathode material was examined. The results showed that the battery with the coated cathode material could discharge at a large current density, and it possessed a stable cycle performance in the range from 3.0 V to 4.2 V. It was explained that the rate of Li ion diffusion increased in the batteries using SrO/Li2O/La2O3/Ta2O5/TiO2-coated LiCoO2 as the cathode and the coated layer could act as a fast ion conductor (SrO/Li2O/La2O3/Ta2O5/TiO2) and as a protecting shell to prevent LiCoO2particles from being attacked by the acidic electrolyte.
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.
文摘Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.