Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe...Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.展开更多
The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, an...The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, anisotropic swelling appears on the polycrystalline TiO2 granula at first, and then the nanotubes are formed.展开更多
TiO2 nanotube precursor was synthesized by the hydrothermal reaction of TiO2 powders with NaOH solution and the properties of the nanotube materials were tuned using different post-treatments. Transmission electron mi...TiO2 nanotube precursor was synthesized by the hydrothermal reaction of TiO2 powders with NaOH solution and the properties of the nanotube materials were tuned using different post-treatments. Transmission electron microscopic (TEM) observation revealed that the nanotube could be obtained by either a direct rinse with acid solution or rinse with distilled water followed by acid solution. The results of X-ray diffraction (XRD) and inductively coupled plasma (ICP) analysis indicated that the nanotube material was composed of H2Ti2O5·H2O. In addition, the photocatalytic activities of the resulting catalysts were found to be strongly dependent on the post-treatment. The results of the photocatalytic reaction showed that the degradation of Acid-red 3B dye fitted pseudo-zero-order kinetics and TiO2 nanotube prepared under direct rinse with acid solution exhibited a higher catalytic efficiency compared to other catalysts.展开更多
The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO...The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.展开更多
Self-organized TiO2 nanotubes were prepared on titanium foils at anodizing voltage of 20V in 0.5% HF solution for 2030min in order to provide a novel high-efficiency photocatalyst. And the resulting TiO2 nanotubes...Self-organized TiO2 nanotubes were prepared on titanium foils at anodizing voltage of 20V in 0.5% HF solution for 2030min in order to provide a novel high-efficiency photocatalyst. And the resulting TiO2 nanotubes, in periodic ring structures around their exteriors, are open on the top, while closed on the bottom. After annealing for 3h in ambient atmosphere, the anatase phase was found, with the increasing content, in the originally amorphous TiO2 nanotubes treated at 350, 400 and 450℃; whereas the rutile phase emerged at 500℃, and the nanotube architecture could be preserved till 550℃. Furthermore, TiO2 nanotubes, fabricated at anodizing voltage of 20V for 20min and then annealed at 400℃, possesses the best photo-catalytic activity, i.e. the decolourisation of methyl orange irradiated for 40min is 99.6%.展开更多
TiO_2 nanotubes(TNTs) have drawn tremendous attention owing to their unique architectural and physical properties. Anodizing of titanium foil has proven to be the most efficient method to fabricate well-aligned TNTs,w...TiO_2 nanotubes(TNTs) have drawn tremendous attention owing to their unique architectural and physical properties. Anodizing of titanium foil has proven to be the most efficient method to fabricate well-aligned TNTs,which, however, usually produces amorphous TNTs and needs further thermal annealing. Recently, a water-assisted crystallization strategy has been proposed and investigated by both science and engineering communities. This method is very efficient and energy saving, and it circumvents the drawbacks of thermal sintering approach. In this paper, we review the recent research progress in this kind of lowtemperature crystallization approach. Here, various synthetic methods are summarized, and the mechanisms of the amorphous–crystalline transformation are analyzed. The fundamental properties and applications of the low-temperature products are also discussed. Furthermore, it is proved that the water-assisted crystallization approach is not only applicable to TNTs but also to crystallizing other metal oxides.展开更多
An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient c...An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.展开更多
A novel method was developed for the sensitive determination of nickel in environmental water samples by using TiO2 nanotubes, a new nanomaterial, as solid phase extraction absorbent. In general, TiO2 nanomaterials we...A novel method was developed for the sensitive determination of nickel in environmental water samples by using TiO2 nanotubes, a new nanomaterial, as solid phase extraction absorbent. In general, TiO2 nanomaterials were often used for catalytic degradation of pollutants in environmental field, and only a very few application in environmental analytic chemistry. In present work, TiO2 nanotubes was firstly used for the enrichment of nickel and the factors would influence the preconcentration performance were optimized. Under the optimal conditions, TiO2 nanotubes exhibited its good enrichment capacity for nickel and the detection limit of the proposed method was 1 ng· mL^-1. The proposed method was validated with real water samples, and excellent results were obtained with the spiked recoveries in the range of 94.4-99.2%, respectively.展开更多
The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as T...The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700, respectively. TNTs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that TNTs calcined at 400 ℃ showed the best thermal stability. When the calcination temperature increased from 400 ℃ to 700 ℃, the special structure of tubes was destroyed and gradually converted into nanorods and/or particles. The transformation from anatase to rutile occurred at 600 ℃, and the rutile phase was enhanced when the calcination temperature was increased to over 600 ℃. The calcina- tion temperature's influence on TNTs' adsorption activity for for TiO2/UV/O3 was investigated in landfill leachate solution chemical oxygen demand (COD) and catalytic activity In landfill leachate solution, the adsorption activity of COD decreased in the reduced order of TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700. In photocatalytic ozonation, TNTs-400 showed the best catalytic activity while TNTs-700 exhibited the worst. In other three processes, the COD removal of TNTs-300/UV/O3 was higher than those of TNTs-500/UV/O3 and TNTs-600/UV/O3 in the first 20 rain, and then became close to those of the latter two in the following 40 rain. Compared with TNTs-300 and TNTs- 400, TNTs-600 had the best anti-fouling activity, while TNTs-500 and TNTs-700 had lower anti-fouling activity than the former three. In photocatalytic ozonation, the calcination temperature of 400 ℃ was appropriate when TNTs were obtained at the synthesis temperature of 105 ℃.展开更多
A combination of carbon nanotubes (CNTs) and titanium (Ti) modified with TiO2 nanotubes (TiO2 NTs) was fulfilled with the aim of improving bioactivity of Ti implant.First,well-ordered TiO2 NTs were prepared by t...A combination of carbon nanotubes (CNTs) and titanium (Ti) modified with TiO2 nanotubes (TiO2 NTs) was fulfilled with the aim of improving bioactivity of Ti implant.First,well-ordered TiO2 NTs were prepared by the electrochemical anodization of Ti in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 50 min,followed by annealing.Then,the carboxylated CNTs were coated onto the TiO2 NTs using electrophoretic deposition (EPD) technique.The growth of hydroxyapatite (HA) on the samples was investigated by soaking them in simulated body fluid (SBF).The result showed the CNTs-coated Ti with the modification of TiO2 NTs (CNTs-TiO2 NTs) was more efficient to induce HA formation than the CNTs-coated smooth Ti (CNTs-Ti).The vitro cell response was evaluated using osteoblast cells (MC3T3-E1).The good cell proliferation and strong cell adhesion could be obtained on the CNTs-TiO2 NTs.These results indicated that CNT coating on the Ti modified with TiO2 NTs could be potentially useful for the periodontal ligament combination on dental implants.展开更多
TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The ef...TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The effects of support calcination temperature of CoMo/TiOz- NTs catalysts on their catalytic performance were investigated for selective hydrodesulfurization (HDS). The samples were characterized by means of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy and H2 temperature-programmed reduction (Hz-TPR). The experimental results revealed that TiOz-NTs support calcined under 500℃ can maintain the nanotubular structure with higher surface area and pore volume. Meanwhile, the obtained supported CoMo/TiO2-NTs catalysts exhibited weak metal-support interaction, more octahedral Mo6+ species and high catalytic performance in selective HDS.展开更多
The detection on tetracycline( TC) in drinking water poses an environmental issue since TC has been widely used to prevent animal disease and promote their growth. In addition,TC was difficult to remove or biodegrade,...The detection on tetracycline( TC) in drinking water poses an environmental issue since TC has been widely used to prevent animal disease and promote their growth. In addition,TC was difficult to remove or biodegrade,which posed a challenge to the conventional techniques. In this work,the batch experiments on TC adsorption in aqueous solution of hydrogel( HG) consisting of graphene oxide( GO) and TiO_2 nanotubes( TN) were successfully conducted. HG composite( HG-TN-GO) was prepared with TN and GO with self-assembly method during the oxidation-reduction reaction,and criogel( CG) with TN and GO was characterized by pH at point of zero charge( pH_(pzc)), transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy( XPS). The adsorption capacity of HG-TN-GO on TC was evaluated by analyzing its isotherms. The maximum adsorption capacity reached 751. 3 mg/g. Besides,the adsorption isotherms were well fitted by the Langmuir model, with the theoretical maximum( q_m) of 797. 0 mg/g. The adsorption process was systematically studied by varying pH during the whole adsorption process. The adsorption occurred probably via π-π interaction and cation-π bonding between TC and the HG-TN-GO surface. The composite could be regenerated in 50% ethanol aqueous solution,without significant capacity loss. After 6 recycles,the decrease of adsorption capacity was less than 10%.展开更多
TiO2 nanotubes(TNTs) with nickel sulfide(NiS) co-catalyst were prepared by a simple solvothermal method and characterized by X-ray diffraction, transmission electron microscope, N2-physisorption, UV–vis diffuse r...TiO2 nanotubes(TNTs) with nickel sulfide(NiS) co-catalyst were prepared by a simple solvothermal method and characterized by X-ray diffraction, transmission electron microscope, N2-physisorption, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. Loading NiS nano-clusters can significantly enhance the photocatalytic H2 evolution performance of TNTs. The optimum NiS loading content was found to be 8 wt% and the corresponding hydrogen production rate is ca. 7486 μmol/h/g, being about 79 times higher than that of pure TNTs. This enhancement of photocatalytic H2 evolution was attributed to the synergistic effect between NiS and TNTs.展开更多
In this paper,the TiO_2 nanotubes were synthesized by hydrothermal method using a 10 mol/L NaOH aqueous solution at 150℃. The structure of prepared materials was characterized by X-ray diffraction(XRD),transmission...In this paper,the TiO_2 nanotubes were synthesized by hydrothermal method using a 10 mol/L NaOH aqueous solution at 150℃. The structure of prepared materials was characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM). scanning electron microscope(SEM) and Brunauer-Emmett-Teller(BET).The prepared TiO_2 nanotubes were used to prepare thick film gas sensors and the gas sensing properties to various gases were tested.Results show the prepared TiO_2 nanotube gas sensors responses to ethanol under dry condition at 450℃.This could be attributed to the fact that it had high porous morphology and a higher pore volume,which can promote the diffusion of ethanol deep inside the films and improve the sensor response. Moreover,the gas sensor made with nanotubes exhibit high selective response towards ethanol gas compared with H_2,CO,acetone.展开更多
A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable ...A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable via modulating current,deposition time and electrolyte concentration. It was revealed,from the scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) in depth profile,that CdS nanoparticles were filled into TiO2 nanotubes. A shift of the absorption edge toward the visible region under the optimal electrodeposition condition was observed with the diffuse reflectance spectroscopy (DRS). A 5-fold enhancement in the photocurrent spectrum for TiO2NTs was observed and the photocurrent response range was significantly extended into the visible region because of the CdS incorporation. Compared with pure TiO2NTs,under a visible light irradiation,CdS@TiO2NTs exhibited a 3.5-fold improvement of photocatalytic activity,which was demonstrated by the photocatalytic decomposition of Rhodamine B (RhB).展开更多
A series of highly ordered N-F-codoped TiO2 nanotubes were synthesized with a simple template technique and the obtained samples were detected by FE-SEM and XPS. The UV-Vis absorption spectrum showed that after N-F-co...A series of highly ordered N-F-codoped TiO2 nanotubes were synthesized with a simple template technique and the obtained samples were detected by FE-SEM and XPS. The UV-Vis absorption spectrum showed that after N-F-codoping,TiO2 nanotubes had a new absorption band at 425 nm,leading to a photoresponse in the visible region. These modified nanotubes showed a significant visibleinduced photocatalytic activity for the degradation of methylene blue in aqueous solution.展开更多
Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-n...Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-naphthalenesulfonic acid (a-NSA) as the dopant. It was found that PANI-TiO2 composites and PANI nanotubes both behaved with significant photocatalytic activities towards AZO dyes, during 2 h photocatalytic processes under natural light, the degradation ratio was 94.2% and 97.2% respectively (methyl orange and orange II). The morphology of such products was characterized by SEM. The specific surface area of such composite nanotubes was 14.7 m2/g compared to normal polyaniline which was 0.27 m2/g. IR and X-ray diffraction characterizations showed that the chemical chain of the composite nanotubes was identical to that of the doped PANI. It may provide a new way for photodegradation of organic contaminants by using conjugated polymer with dimensional structure.展开更多
We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To impro...We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.展开更多
Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and pho...Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and photocatalytic properties of TNAs were characterized by using TEM, SEM, XRD and photodegradation of methylene blue. It was found that the morphology and structure of TNAs could be significantly influenced by the anodization time and applied voltage. The obtained tube length was found to be proportional to anodization time, and the calculated growth rate of nanotubes was 0.6 m/h. The microstructure analysis demonstrated that the diameter and thickness of the nanotubes increased with the increase of anodization voltage. The growth mechanism of TNAs was also proposed according to the observed relationship between current density and time during anodization. As expected, the obtained TNAs showed a higher photocatalytic activity than the commercial TiO 2 P25 nanoparticles.展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
基金Project(1254G024)supported by the Young Core Instructor Foundation from Heilongjiang Educational Committee,ChinaProject(2012RFQXS113)supported by Scientific and Technological Innovation Talents of Harbin,China
文摘Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.
基金This project was supported by the National Natural Science Foundation of China (20071010).
文摘The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, anisotropic swelling appears on the polycrystalline TiO2 granula at first, and then the nanotubes are formed.
文摘TiO2 nanotube precursor was synthesized by the hydrothermal reaction of TiO2 powders with NaOH solution and the properties of the nanotube materials were tuned using different post-treatments. Transmission electron microscopic (TEM) observation revealed that the nanotube could be obtained by either a direct rinse with acid solution or rinse with distilled water followed by acid solution. The results of X-ray diffraction (XRD) and inductively coupled plasma (ICP) analysis indicated that the nanotube material was composed of H2Ti2O5·H2O. In addition, the photocatalytic activities of the resulting catalysts were found to be strongly dependent on the post-treatment. The results of the photocatalytic reaction showed that the degradation of Acid-red 3B dye fitted pseudo-zero-order kinetics and TiO2 nanotube prepared under direct rinse with acid solution exhibited a higher catalytic efficiency compared to other catalysts.
基金the 11th Five-Year Supporting Programs of Science and Technology (No. 2006BAD04A12)
文摘The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.
文摘Self-organized TiO2 nanotubes were prepared on titanium foils at anodizing voltage of 20V in 0.5% HF solution for 2030min in order to provide a novel high-efficiency photocatalyst. And the resulting TiO2 nanotubes, in periodic ring structures around their exteriors, are open on the top, while closed on the bottom. After annealing for 3h in ambient atmosphere, the anatase phase was found, with the increasing content, in the originally amorphous TiO2 nanotubes treated at 350, 400 and 450℃; whereas the rutile phase emerged at 500℃, and the nanotube architecture could be preserved till 550℃. Furthermore, TiO2 nanotubes, fabricated at anodizing voltage of 20V for 20min and then annealed at 400℃, possesses the best photo-catalytic activity, i.e. the decolourisation of methyl orange irradiated for 40min is 99.6%.
基金financially supported by the National R&D Program of China under No.2017YFA0207400National Key Research and Development Plan under No.2016YFA0300801National Natural Science Foundation of China under Nos.51502033,61571079,61131005 and 51572042
文摘TiO_2 nanotubes(TNTs) have drawn tremendous attention owing to their unique architectural and physical properties. Anodizing of titanium foil has proven to be the most efficient method to fabricate well-aligned TNTs,which, however, usually produces amorphous TNTs and needs further thermal annealing. Recently, a water-assisted crystallization strategy has been proposed and investigated by both science and engineering communities. This method is very efficient and energy saving, and it circumvents the drawbacks of thermal sintering approach. In this paper, we review the recent research progress in this kind of lowtemperature crystallization approach. Here, various synthetic methods are summarized, and the mechanisms of the amorphous–crystalline transformation are analyzed. The fundamental properties and applications of the low-temperature products are also discussed. Furthermore, it is proved that the water-assisted crystallization approach is not only applicable to TNTs but also to crystallizing other metal oxides.
文摘An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.
基金the Creative Talented Person's Fund of Henan Province (No.[2005]126)Natural Science Foundation of Henan Province(No.072300460010)+1 种基金the Fund of Henan Normal University (No.2006PL06)the grants from the Henan Key Laboratory for environmental pollution control.
文摘A novel method was developed for the sensitive determination of nickel in environmental water samples by using TiO2 nanotubes, a new nanomaterial, as solid phase extraction absorbent. In general, TiO2 nanomaterials were often used for catalytic degradation of pollutants in environmental field, and only a very few application in environmental analytic chemistry. In present work, TiO2 nanotubes was firstly used for the enrichment of nickel and the factors would influence the preconcentration performance were optimized. Under the optimal conditions, TiO2 nanotubes exhibited its good enrichment capacity for nickel and the detection limit of the proposed method was 1 ng· mL^-1. The proposed method was validated with real water samples, and excellent results were obtained with the spiked recoveries in the range of 94.4-99.2%, respectively.
基金Supported by Tianjin Science and Technology Development Plan Project (No.06YFGZSH06700)
文摘The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700, respectively. TNTs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that TNTs calcined at 400 ℃ showed the best thermal stability. When the calcination temperature increased from 400 ℃ to 700 ℃, the special structure of tubes was destroyed and gradually converted into nanorods and/or particles. The transformation from anatase to rutile occurred at 600 ℃, and the rutile phase was enhanced when the calcination temperature was increased to over 600 ℃. The calcina- tion temperature's influence on TNTs' adsorption activity for for TiO2/UV/O3 was investigated in landfill leachate solution chemical oxygen demand (COD) and catalytic activity In landfill leachate solution, the adsorption activity of COD decreased in the reduced order of TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700. In photocatalytic ozonation, TNTs-400 showed the best catalytic activity while TNTs-700 exhibited the worst. In other three processes, the COD removal of TNTs-300/UV/O3 was higher than those of TNTs-500/UV/O3 and TNTs-600/UV/O3 in the first 20 rain, and then became close to those of the latter two in the following 40 rain. Compared with TNTs-300 and TNTs- 400, TNTs-600 had the best anti-fouling activity, while TNTs-500 and TNTs-700 had lower anti-fouling activity than the former three. In photocatalytic ozonation, the calcination temperature of 400 ℃ was appropriate when TNTs were obtained at the synthesis temperature of 105 ℃.
基金Funded by the Ministry of Knowledge Economy (MKE) of Korea(No.2010-H-004-00020000-2010)the Ministry of Education of Korea(No.2010-0023901)
文摘A combination of carbon nanotubes (CNTs) and titanium (Ti) modified with TiO2 nanotubes (TiO2 NTs) was fulfilled with the aim of improving bioactivity of Ti implant.First,well-ordered TiO2 NTs were prepared by the electrochemical anodization of Ti in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 50 min,followed by annealing.Then,the carboxylated CNTs were coated onto the TiO2 NTs using electrophoretic deposition (EPD) technique.The growth of hydroxyapatite (HA) on the samples was investigated by soaking them in simulated body fluid (SBF).The result showed the CNTs-coated Ti with the modification of TiO2 NTs (CNTs-TiO2 NTs) was more efficient to induce HA formation than the CNTs-coated smooth Ti (CNTs-Ti).The vitro cell response was evaluated using osteoblast cells (MC3T3-E1).The good cell proliferation and strong cell adhesion could be obtained on the CNTs-TiO2 NTs.These results indicated that CNT coating on the Ti modified with TiO2 NTs could be potentially useful for the periodontal ligament combination on dental implants.
文摘TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The effects of support calcination temperature of CoMo/TiOz- NTs catalysts on their catalytic performance were investigated for selective hydrodesulfurization (HDS). The samples were characterized by means of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy and H2 temperature-programmed reduction (Hz-TPR). The experimental results revealed that TiOz-NTs support calcined under 500℃ can maintain the nanotubular structure with higher surface area and pore volume. Meanwhile, the obtained supported CoMo/TiO2-NTs catalysts exhibited weak metal-support interaction, more octahedral Mo6+ species and high catalytic performance in selective HDS.
基金Environmental Engineering,Natural Science Foundation of China(No.51522805)Innovation Foundation of Nanjing Institute of Technology,China(No.CKJB201410)
文摘The detection on tetracycline( TC) in drinking water poses an environmental issue since TC has been widely used to prevent animal disease and promote their growth. In addition,TC was difficult to remove or biodegrade,which posed a challenge to the conventional techniques. In this work,the batch experiments on TC adsorption in aqueous solution of hydrogel( HG) consisting of graphene oxide( GO) and TiO_2 nanotubes( TN) were successfully conducted. HG composite( HG-TN-GO) was prepared with TN and GO with self-assembly method during the oxidation-reduction reaction,and criogel( CG) with TN and GO was characterized by pH at point of zero charge( pH_(pzc)), transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy( XPS). The adsorption capacity of HG-TN-GO on TC was evaluated by analyzing its isotherms. The maximum adsorption capacity reached 751. 3 mg/g. Besides,the adsorption isotherms were well fitted by the Langmuir model, with the theoretical maximum( q_m) of 797. 0 mg/g. The adsorption process was systematically studied by varying pH during the whole adsorption process. The adsorption occurred probably via π-π interaction and cation-π bonding between TC and the HG-TN-GO surface. The composite could be regenerated in 50% ethanol aqueous solution,without significant capacity loss. After 6 recycles,the decrease of adsorption capacity was less than 10%.
基金supported by the National Natural Science Foundation of China(no.21376102)the Natural Science Foundation of Guangdong Province,China(no.S2013010012199)
文摘TiO2 nanotubes(TNTs) with nickel sulfide(NiS) co-catalyst were prepared by a simple solvothermal method and characterized by X-ray diffraction, transmission electron microscope, N2-physisorption, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. Loading NiS nano-clusters can significantly enhance the photocatalytic H2 evolution performance of TNTs. The optimum NiS loading content was found to be 8 wt% and the corresponding hydrogen production rate is ca. 7486 μmol/h/g, being about 79 times higher than that of pure TNTs. This enhancement of photocatalytic H2 evolution was attributed to the synergistic effect between NiS and TNTs.
基金supported by the Chinese Ministry of Science and Technology 973 Program(No. 2006CB705604)Science and Technology Commission of Shanghai Municipality(No.09XD 1401800)+1 种基金the National Natural Science Foundation(No.50578090)Shanghai Leading Academic Discipline Project(No.S30109)
文摘In this paper,the TiO_2 nanotubes were synthesized by hydrothermal method using a 10 mol/L NaOH aqueous solution at 150℃. The structure of prepared materials was characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM). scanning electron microscope(SEM) and Brunauer-Emmett-Teller(BET).The prepared TiO_2 nanotubes were used to prepare thick film gas sensors and the gas sensing properties to various gases were tested.Results show the prepared TiO_2 nanotube gas sensors responses to ethanol under dry condition at 450℃.This could be attributed to the fact that it had high porous morphology and a higher pore volume,which can promote the diffusion of ethanol deep inside the films and improve the sensor response. Moreover,the gas sensor made with nanotubes exhibit high selective response towards ethanol gas compared with H_2,CO,acetone.
基金Supported by the National Natural Science Foundation of China (Grant No. 50571085)the Natural Science Foundation of Fujian Province (Grant No. U0750015)R&D Program of Fujian (Grant No. 2007H0031) and that of Xiamen (Grant No. 3502Z20073004)
文摘A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable via modulating current,deposition time and electrolyte concentration. It was revealed,from the scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) in depth profile,that CdS nanoparticles were filled into TiO2 nanotubes. A shift of the absorption edge toward the visible region under the optimal electrodeposition condition was observed with the diffuse reflectance spectroscopy (DRS). A 5-fold enhancement in the photocurrent spectrum for TiO2NTs was observed and the photocurrent response range was significantly extended into the visible region because of the CdS incorporation. Compared with pure TiO2NTs,under a visible light irradiation,CdS@TiO2NTs exhibited a 3.5-fold improvement of photocatalytic activity,which was demonstrated by the photocatalytic decomposition of Rhodamine B (RhB).
文摘A series of highly ordered N-F-codoped TiO2 nanotubes were synthesized with a simple template technique and the obtained samples were detected by FE-SEM and XPS. The UV-Vis absorption spectrum showed that after N-F-codoping,TiO2 nanotubes had a new absorption band at 425 nm,leading to a photoresponse in the visible region. These modified nanotubes showed a significant visibleinduced photocatalytic activity for the degradation of methylene blue in aqueous solution.
基金Funded in Part by the Research Fund of Hubei Provincial Department of Education,China(No.Q20121102)
文摘Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-naphthalenesulfonic acid (a-NSA) as the dopant. It was found that PANI-TiO2 composites and PANI nanotubes both behaved with significant photocatalytic activities towards AZO dyes, during 2 h photocatalytic processes under natural light, the degradation ratio was 94.2% and 97.2% respectively (methyl orange and orange II). The morphology of such products was characterized by SEM. The specific surface area of such composite nanotubes was 14.7 m2/g compared to normal polyaniline which was 0.27 m2/g. IR and X-ray diffraction characterizations showed that the chemical chain of the composite nanotubes was identical to that of the doped PANI. It may provide a new way for photodegradation of organic contaminants by using conjugated polymer with dimensional structure.
基金supported in part by the National Natural Science Foundation of China(21471043,21304028,51403195,31501576)~~
文摘We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.
基金financially supported by the National Natural Science Foundation of China (51072189, 21003111, 21003112)Natural Science Foundation of Zhejiang Province (Y4090507)Scientific Research Foundation of Education Department of Zhejiang Province(Y201018867)
文摘Well-ordered TiO 2 nanotube arrays (TNAs) were fabricated by electrochemical anodization in a mixed organic electrolyte consisting of ethylene glycol and glycerol. The morphology, structure, crystalline phase, and photocatalytic properties of TNAs were characterized by using TEM, SEM, XRD and photodegradation of methylene blue. It was found that the morphology and structure of TNAs could be significantly influenced by the anodization time and applied voltage. The obtained tube length was found to be proportional to anodization time, and the calculated growth rate of nanotubes was 0.6 m/h. The microstructure analysis demonstrated that the diameter and thickness of the nanotubes increased with the increase of anodization voltage. The growth mechanism of TNAs was also proposed according to the observed relationship between current density and time during anodization. As expected, the obtained TNAs showed a higher photocatalytic activity than the commercial TiO 2 P25 nanoparticles.
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.