Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electr...Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that TiO2 film prepared from precursor solution without PEG is composed of spherical particles of about 100 nm and several nanometer mesoporous pores. With the increase of the amount of PEG added to the precursor solution, the diameter and the depth of the pores in the resultant films increas on the decomposition of PEG during heat-treatment, which lead to them increase of the surface roughness of the films. XRD and TEM results show that the single anatase phase is precipitated and there are some orientation effects in (101) direction.展开更多
By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that th...By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.展开更多
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe...Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.展开更多
It is well known that the photocatalytic activity of TiO_2 thin filmsstrongly depends on the preparing methods and post-treatment conditions, since they have a decisiveinfluence on the chemical and physical properties...It is well known that the photocatalytic activity of TiO_2 thin filmsstrongly depends on the preparing methods and post-treatment conditions, since they have a decisiveinfluence on the chemical and physical properties of TiO_2 thin films. Therefore, it is necessary toelucidate the influence of the preparation process and post-treatment conditions on thephoto-catalytic activity and surface microstructures of the films. This review deals with thepreparation of TiO_2 thin film photo-catalysts by wet-chemical methods (such as sol-gel,-reversemicellar and liquid phase deposition) and the comparison of various preparation methods as well astheir advantage and disadvantage. Furthermore, it is discussed that the advancement ofphotocatalytic activity, super-hydrophilicity and bactericidal activity of TiO_2 thin filmphotocatalyst in recent years.展开更多
Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic fo...Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.展开更多
The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-g...The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.展开更多
The nano-ZnFe2O4/TiO2 films possess the functions of desulfurization and degradation for organic pollutants. The sols of ZnFe2O4/TiO2 were prepared by sol-gel method and coated on glass and porous ceramic by vertical ...The nano-ZnFe2O4/TiO2 films possess the functions of desulfurization and degradation for organic pollutants. The sols of ZnFe2O4/TiO2 were prepared by sol-gel method and coated on glass and porous ceramic by vertical coating and dipping-lift processes, respectively, and the samples were obtained after drying and sintering. The composition, appearance, absorption spectrum of the films, and the influence of the film on porous ceramic performances were analyzed using SEM, AFM, UVVis spectrometer, and mercury porosimeter, respectively, to determine the operation parameters of the multifunction porous ceramic elements for gas-purification.展开更多
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t...We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.展开更多
Crystalline TiO2 thin films were prepared by DC reactive magnetron sputtering on indium-tin oxide(ITO) thin film deposited on quartz substrate, the photoconductive UV detector on TiO2 thin films was based on a sandw...Crystalline TiO2 thin films were prepared by DC reactive magnetron sputtering on indium-tin oxide(ITO) thin film deposited on quartz substrate, the photoconductive UV detector on TiO2 thin films was based on a sandwich structure of C/ TiO2/ITO. The measurement of the I-V characteristics for these devices shows good ohmic contact. The photoresponse of TiO2 thin films was analyzed at different bias voltage. The detector shows a good photoresponse with a rise time of 2 s and a fall time of 40 s, the photocurrent is linearly increased with the bias voltage.展开更多
The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pre...The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.展开更多
The influence of amorphous TiO_2 seeding layers on the phase composition of lead magnesium niobate-lead titanate(0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3,PMN-PT) films deposited on Pt/Ti/SiO2/Si substrate by RF magnetron sputter...The influence of amorphous TiO_2 seeding layers on the phase composition of lead magnesium niobate-lead titanate(0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3,PMN-PT) films deposited on Pt/Ti/SiO2/Si substrate by RF magnetron sputtering was examined.The relation between seeding layer thickness and phase composition at different post annealing temperature was observed by XRD.The thickness of amorphous TiO2 seeding layer and post annealing temperature had remarkable effects on PMN-PT film phase composition.When amorphous seeding layer becomes thick,a new phase of Nb2O5 exists in the films.Only when the seeding layer thickness is suitable,the film with pure perovskite phase can be attained.展开更多
The dye-sensitized TiO2 complex films were prepared by the dye coat onto TiO2 surfaces, and the sensitizing mechanism and adsorption properties of the dye-sensitized TiO2 complex films were investigated. The influence...The dye-sensitized TiO2 complex films were prepared by the dye coat onto TiO2 surfaces, and the sensitizing mechanism and adsorption properties of the dye-sensitized TiO2 complex films were investigated. The influence of the application conditions of dye adsorbed on TiO2 films on the amount of dye adsorption was discussed. Experimental results show that the concentration, the temperature of dye solutions and the dipping time of TiO2 films in the dye solutions have a significant influence on the amount of dye adsorption. Cell test indicates that the conversion efficiency of light to electricity increases with the amount of dye adsorption.展开更多
Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photocond...Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.展开更多
Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In thi...Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In this study, TiO2 porous films were synthesized by sol-gel method. Polyethylene glycol (PEG) 4000 was used as a templating reagent, which is oxidized at a lower temperature than TiO2. This allows the formation of a “skeleton” of porous TiO2 with increased surface area, resulting in higher photocatalytic activity. The film characterization was made with help of FE-SEM microscope, XRD diffractometer and scotch tape test. Finally, the oxidation experiments were performed using methylene blue as a model pollutant and they revealed an increase in the photocatalytic activity of porous films in comparison with the non-porous films.展开更多
The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)fil...The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金The work was partially supported by a grant from the National Natural Science Foundation of China and the ResearchGrants Counc
文摘Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that TiO2 film prepared from precursor solution without PEG is composed of spherical particles of about 100 nm and several nanometer mesoporous pores. With the increase of the amount of PEG added to the precursor solution, the diameter and the depth of the pores in the resultant films increas on the decomposition of PEG during heat-treatment, which lead to them increase of the surface roughness of the films. XRD and TEM results show that the single anatase phase is precipitated and there are some orientation effects in (101) direction.
基金Supported by the National Natural Science Foundation of China(Nos.20606035, 20401015, 50574082)Chinese Acade-my of Sciences Project of One Hundred Talents.
文摘By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.
基金Project(1254G024)supported by the Young Core Instructor Foundation from Heilongjiang Educational Committee,ChinaProject(2012RFQXS113)supported by Scientific and Technological Innovation Talents of Harbin,China
文摘Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.
文摘It is well known that the photocatalytic activity of TiO_2 thin filmsstrongly depends on the preparing methods and post-treatment conditions, since they have a decisiveinfluence on the chemical and physical properties of TiO_2 thin films. Therefore, it is necessary toelucidate the influence of the preparation process and post-treatment conditions on thephoto-catalytic activity and surface microstructures of the films. This review deals with thepreparation of TiO_2 thin film photo-catalysts by wet-chemical methods (such as sol-gel,-reversemicellar and liquid phase deposition) and the comparison of various preparation methods as well astheir advantage and disadvantage. Furthermore, it is discussed that the advancement ofphotocatalytic activity, super-hydrophilicity and bactericidal activity of TiO_2 thin filmphotocatalyst in recent years.
基金This project is financially supported by the National Natural Science Foundation of China (No.s 50272049, 50072016) The Excellent Young Teachers Program of MOE, China (No. (2002)350)
文摘Two kinds of TiO_2 nanometer thin films were prepared on stainless steel bythe reverse micellar and sol-gel methods, respectively. The calcined TiO_ 2 thin films werecharacterized by X-ray diffraction (XRD), atomic force microscopy (AFM), BET surface area and X-rayphotoelectron spectroscopy (XPS). Photocatalytic activity was evaluated by photocatalyticdecoloration of methyl orange aqueous solution. The results showed that the TiO_2 thin filmsprepared by reverse micellar method (designated as RM-TiO_2 films) showed higher photocatalyticactivity than those by sol-gel method (designated as SG-TiO_2 films). This is attributed to the factthat the former is composed of smaller monodispersed spherical particles with a size of about 15 nmand possesses higher surface areas.
文摘The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.
基金Supported by National 863 Project of China (2001AAA333040).
文摘The nano-ZnFe2O4/TiO2 films possess the functions of desulfurization and degradation for organic pollutants. The sols of ZnFe2O4/TiO2 were prepared by sol-gel method and coated on glass and porous ceramic by vertical coating and dipping-lift processes, respectively, and the samples were obtained after drying and sintering. The composition, appearance, absorption spectrum of the films, and the influence of the film on porous ceramic performances were analyzed using SEM, AFM, UVVis spectrometer, and mercury porosimeter, respectively, to determine the operation parameters of the multifunction porous ceramic elements for gas-purification.
基金supported by the HK Innovation and Technology Fund (ITS/004/14)the HK-RGC General Research Funds (GRE No. HKUST 606511)
文摘We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.
文摘Crystalline TiO2 thin films were prepared by DC reactive magnetron sputtering on indium-tin oxide(ITO) thin film deposited on quartz substrate, the photoconductive UV detector on TiO2 thin films was based on a sandwich structure of C/ TiO2/ITO. The measurement of the I-V characteristics for these devices shows good ohmic contact. The photoresponse of TiO2 thin films was analyzed at different bias voltage. The detector shows a good photoresponse with a rise time of 2 s and a fall time of 40 s, the photocurrent is linearly increased with the bias voltage.
基金the support from National Natural Science Foundation of China (22208355, 22178363 and 21978300)the financial support and mica samples from Changzi Wu and RIKA technology CO., LTD.
文摘The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.
文摘The influence of amorphous TiO_2 seeding layers on the phase composition of lead magnesium niobate-lead titanate(0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3,PMN-PT) films deposited on Pt/Ti/SiO2/Si substrate by RF magnetron sputtering was examined.The relation between seeding layer thickness and phase composition at different post annealing temperature was observed by XRD.The thickness of amorphous TiO2 seeding layer and post annealing temperature had remarkable effects on PMN-PT film phase composition.When amorphous seeding layer becomes thick,a new phase of Nb2O5 exists in the films.Only when the seeding layer thickness is suitable,the film with pure perovskite phase can be attained.
基金This work was supported by the National Key Project of China for Basic Research on Photovoltaic cell No.2000028200 and the CAS Knowledge Innovation Project No.KGCX2-303
文摘The dye-sensitized TiO2 complex films were prepared by the dye coat onto TiO2 surfaces, and the sensitizing mechanism and adsorption properties of the dye-sensitized TiO2 complex films were investigated. The influence of the application conditions of dye adsorbed on TiO2 films on the amount of dye adsorption was discussed. Experimental results show that the concentration, the temperature of dye solutions and the dipping time of TiO2 films in the dye solutions have a significant influence on the amount of dye adsorption. Cell test indicates that the conversion efficiency of light to electricity increases with the amount of dye adsorption.
基金This work was supported by National Research Fund for Fundamental Key Project(G2000028205)Innovative Foundation of Chinese Academy of Sciences(KGCX2-303-02)the Project of the National Natural Science Foundation of China(29873057).
文摘Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.
文摘Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In this study, TiO2 porous films were synthesized by sol-gel method. Polyethylene glycol (PEG) 4000 was used as a templating reagent, which is oxidized at a lower temperature than TiO2. This allows the formation of a “skeleton” of porous TiO2 with increased surface area, resulting in higher photocatalytic activity. The film characterization was made with help of FE-SEM microscope, XRD diffractometer and scotch tape test. Finally, the oxidation experiments were performed using methylene blue as a model pollutant and they revealed an increase in the photocatalytic activity of porous films in comparison with the non-porous films.
基金financially supported by National Natural Science Foundation of China(Nos.12075054,12205040,12175036,11875104)。
文摘The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region.