This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and redu...This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and reduce the agglomeration of powders. Also, the reflex spectra of nano-scale powders with different grain size were studied. It tvas found that the wave length and width of reflex spectra are connected with the grain size of nano-TiO2 powders展开更多
The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalyti...The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.展开更多
TiAl3 particle reinforced pure Al composite has been made by direct reaction among molten Al, TiO2 and a flux. The composite exhibits high Synthetically properties. The strength and hardness are higher than those of p...TiAl3 particle reinforced pure Al composite has been made by direct reaction among molten Al, TiO2 and a flux. The composite exhibits high Synthetically properties. The strength and hardness are higher than those of pure Al matrix by 71.5% and 134% respectively However, the elongation is 20.36%, slightly lower than that of the Al matrix.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
BACKGROUND Respiratory viruses are increasingly detected in children with communityacquired pneumonia.Further strategies to limit antibiotic use in children with viral pneumonia are warranted.AIM To explore clinical e...BACKGROUND Respiratory viruses are increasingly detected in children with communityacquired pneumonia.Further strategies to limit antibiotic use in children with viral pneumonia are warranted.AIM To explore clinical efficacy of budesonide/formoterol inhalation powder for viral pneumonia in children and its impact on cellular immunity and inflammatory factor production.METHODS A total of 60 children with viral pneumonia were recruited:30 receiving budesonide/formoterol inhalation powder and 30 conventional symptomatic treatment.Outcome measures included peripheral blood levels of inflammatory cytokines,CD4^(+),CD8^(+),Th1,Th2,Th17 and Treg,clinical efficacy,and incidence of adverse reactions.RESULTS Compared with the control group,the observation group showed a significant reduction in interleukin-6 and high-sensitivity C-reactive protein levels after treatment.Compared with the control group,the observation group showed a significant increase in CD4^(+)/CD8^(+)and Th1/Th2 levels,and a decrease in Th17/Treg levels after treatment.The total effective rates in the observation group and the control group were 93.75%and 85.00%,respectively,which was a significant difference(P=0.003).CONCLUSION Budesonide/formoterol inhalation powder significantly improved therapeutic efficacy for viral pneumonia in children.The mechanism of action may be related to downregulation of the inflammatory response and improved cellular immune function.展开更多
Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmis...Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.展开更多
Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granu...Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.展开更多
The lanthanum trivalent ion doped TiO2 nanopowders were prepared by liquid plasma spray with solution of titanium tetra-tert-butoxide and alcohol as feedstock and La(NO3)3·6H2O as doping component. The photocatal...The lanthanum trivalent ion doped TiO2 nanopowders were prepared by liquid plasma spray with solution of titanium tetra-tert-butoxide and alcohol as feedstock and La(NO3)3·6H2O as doping component. The photocatalytic activity of samples at different doping concentrations in photocatalytic degradation of methyl orange was discussed. The powders were characterized by Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD), and the effect of doped ion on the pattern, phase composition and crystallite sizes were analyzed. The results indicated that lanthanum trivalent ion doped TiO2 nanopowders could be prepared by liquid plasma spray. Lanthanum trivalent ion doping increased the photocatalytic activity of TiO2 greatly, the optimal doping concentration was 0.5%. The doped powders were the mixture of anatase phase and rutile phase. The contents of anatase phase decreased firstly and then increased with an increase in the contents of lanthanum trivalent ion. Doping lanthanum trivalent ion could make the TiO2 nanopowders uniform and reduced its particle size.展开更多
Recoverable TiO2 photocatalysis material supported by silicon powder was prepared with sol-gel method, afterwards the silica gol and sodium silicate were used as molding binder respectively to investigate their effec...Recoverable TiO2 photocatalysis material supported by silicon powder was prepared with sol-gel method, afterwards the silica gol and sodium silicate were used as molding binder respectively to investigate their effects (including binder type and binder addition quantity) on the crystal structure and catalysis properties of photocatalyst. In this work, the catalysis activity was defined as the degradation rate of methyl orange solution upon ultraviolet lamp irradiation, and the specific areas were determined with nitrogen desorption method. TiO2 crystal form was measured with X-ray powder diffraction and their micro-morphology was observed with SEM. Experimental results indicate that these two binders do not affect the crystal form transformation of TiO2, but silica gol can increase the specific surface area of TiO2 photocatalyst obviously and the addition of sodium silicate can decrease it. In all, silica gol is a better candidate than sodium silicate for higher catalysis property. In conclusion, 6% silica gol is the optimal addition concentration. Under this condition, the ratio of anatase to rutile TiO2 is 64:36, the specific area is 29.67 m^2/g, and as expected, the degradation rate of methyl orange could be as high as 90% after irradiation for 5 days.展开更多
To improve the wear resistance of magnesium alloy,the laser surface cladding of AZ31B magnesium alloy with Al-12 % Si and Al2O3-40 % TiO2 composite powders (in the wt.% ratio of 10:1,6:1,4:1) were investigated by usin...To improve the wear resistance of magnesium alloy,the laser surface cladding of AZ31B magnesium alloy with Al-12 % Si and Al2O3-40 % TiO2 composite powders (in the wt.% ratio of 10:1,6:1,4:1) were investigated by using a 5kW continuous wave CO2 laser.A detailed microstructure and phase analysis of the surface modified layer were studied by optics microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy (EDS),X-ray diffraction(XRD).The microstructure of the surface modified layers mainly consist of Al-Mg matrix,dendrite precipitates and Al2O3,TiO2 ceramic particles.The microhardness of the surface layer were measured and wear resistance property were evaluated in details.The average microhardness of the surface layers were significantly improved to 250HV0.05 as compared with 50HV0.05 of the AZ31B substrate.The results showed that the wear resistance of the laser surface modified samples was considerably improved as compared as the as-received specimen.展开更多
TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO...TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn-TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.展开更多
Esters of 2- and 3-monochloropropane-1,2-diol (MCPD) are significative contaminants of processed edible oils used as foods or food ingredients. The aim of this study was to develop and validate a new method by GC-MS f...Esters of 2- and 3-monochloropropane-1,2-diol (MCPD) are significative contaminants of processed edible oils used as foods or food ingredients. The aim of this study was to develop and validate a new method by GC-MS for the simultaneous quantification of 2 and 3-MCPD esters in infant milk powder and edible vegetable oils. The developed protocol included fat fraction in infant milk powder and edible vegetable oils samples was extracted and treated with sodium methylate-methanol to cleave the ester bonds of the 2- and 3-MCPD esters, moreover, standard samples of deuterium isotope-labeled 2- and 3-MCPD palmitic acid double esters and stearic acid double esters were used as the internal standards. Furthermore, this method was validated when it was applied to food products, concrete manifestation in its good accuracy (the recovery of MCPD esters ranged from 86% to 114%), high sensitivity (the LOD of 3-MCPD and 2-MCPD esters were 0.025 and 0.020 mg/kg, LOQ were 0.075, 0.060 mg/kg, respectively) and satisfactory repeatability (RSD below 6.8%) for all analytes. In the 150 commercial edible vegetable oils and infant formula milk powder samples, we obtained a preliminary profile of MCPD ester contamination.展开更多
化工、纺织印染与农药化肥等产业的蓬勃发展推动着人类社会的进步,但同时也给环境治理带来了巨大难题。目前,光催化降解局限于在特定波长下针对单一有机污染物进行降解,然而现实中的情况往往更复杂。因此,开发一种多功能光催化材料用于...化工、纺织印染与农药化肥等产业的蓬勃发展推动着人类社会的进步,但同时也给环境治理带来了巨大难题。目前,光催化降解局限于在特定波长下针对单一有机污染物进行降解,然而现实中的情况往往更复杂。因此,开发一种多功能光催化材料用于光催化降解不同有机污染物显得尤为重要。采用一步无模板溶剂热法合成了核壳结构的C-TiO_(2)复合材料前驱体,并在氩气气氛下煅烧得到高结晶度的C-TiO_(2)复合光催化材料。运用SEM、TEM、XRD和TG等表征手段对材料进行表征,结论如下:550℃煅烧时的样品为包含少量碳的高结晶度的锐钛矿相TiO 2,且550℃煅烧时的样品依然保持了完整的核壳结构。此外,C-TiO_(2)复合材料的比表面积高达85.69 m 2·g^(-1),平均孔径为16.4 nm以及孔体积为0.423 m 3·g^(-1)。在UV-Vis光照射下,C-TiO_(2)复合材料分别对罗丹明B(RhB)、亚甲基蓝(MB)和刚果红(CR)3种染料显示出增强的光催化降解活性。展开更多
文摘This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and reduce the agglomeration of powders. Also, the reflex spectra of nano-scale powders with different grain size were studied. It tvas found that the wave length and width of reflex spectra are connected with the grain size of nano-TiO2 powders
基金Foundation item: The National Natural Science Foundation of China(No. 20371023)
文摘The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.
文摘TiAl3 particle reinforced pure Al composite has been made by direct reaction among molten Al, TiO2 and a flux. The composite exhibits high Synthetically properties. The strength and hardness are higher than those of pure Al matrix by 71.5% and 134% respectively However, the elongation is 20.36%, slightly lower than that of the Al matrix.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金the Wenzhou Basic Medical and Health Science and Technology Project,No.Y20210307.
文摘BACKGROUND Respiratory viruses are increasingly detected in children with communityacquired pneumonia.Further strategies to limit antibiotic use in children with viral pneumonia are warranted.AIM To explore clinical efficacy of budesonide/formoterol inhalation powder for viral pneumonia in children and its impact on cellular immunity and inflammatory factor production.METHODS A total of 60 children with viral pneumonia were recruited:30 receiving budesonide/formoterol inhalation powder and 30 conventional symptomatic treatment.Outcome measures included peripheral blood levels of inflammatory cytokines,CD4^(+),CD8^(+),Th1,Th2,Th17 and Treg,clinical efficacy,and incidence of adverse reactions.RESULTS Compared with the control group,the observation group showed a significant reduction in interleukin-6 and high-sensitivity C-reactive protein levels after treatment.Compared with the control group,the observation group showed a significant increase in CD4^(+)/CD8^(+)and Th1/Th2 levels,and a decrease in Th17/Treg levels after treatment.The total effective rates in the observation group and the control group were 93.75%and 85.00%,respectively,which was a significant difference(P=0.003).CONCLUSION Budesonide/formoterol inhalation powder significantly improved therapeutic efficacy for viral pneumonia in children.The mechanism of action may be related to downregulation of the inflammatory response and improved cellular immune function.
基金Project (NS2010153) supported by Nanjing University of Aeronautics and Astronautics Research Funding, ChinaProject (BE2009130) supported by Jiangsu Key Technology R&D Program, China
文摘Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.
基金Projects(51072045,51102074)supported by the National Natural Science Foundation of China
文摘Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.
基金the Natural Science Foundation of Shannxi ,China (2005E103)
文摘The lanthanum trivalent ion doped TiO2 nanopowders were prepared by liquid plasma spray with solution of titanium tetra-tert-butoxide and alcohol as feedstock and La(NO3)3·6H2O as doping component. The photocatalytic activity of samples at different doping concentrations in photocatalytic degradation of methyl orange was discussed. The powders were characterized by Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD), and the effect of doped ion on the pattern, phase composition and crystallite sizes were analyzed. The results indicated that lanthanum trivalent ion doped TiO2 nanopowders could be prepared by liquid plasma spray. Lanthanum trivalent ion doping increased the photocatalytic activity of TiO2 greatly, the optimal doping concentration was 0.5%. The doped powders were the mixture of anatase phase and rutile phase. The contents of anatase phase decreased firstly and then increased with an increase in the contents of lanthanum trivalent ion. Doping lanthanum trivalent ion could make the TiO2 nanopowders uniform and reduced its particle size.
基金the Natural Science Foundation of Fujian Province(No.T08J0129)the Science and Technology Developing Foundation of Fuzhou University(No. 2008-XQ-001)Research Project of the Education Department of Fujian Province(JA05185)
文摘Recoverable TiO2 photocatalysis material supported by silicon powder was prepared with sol-gel method, afterwards the silica gol and sodium silicate were used as molding binder respectively to investigate their effects (including binder type and binder addition quantity) on the crystal structure and catalysis properties of photocatalyst. In this work, the catalysis activity was defined as the degradation rate of methyl orange solution upon ultraviolet lamp irradiation, and the specific areas were determined with nitrogen desorption method. TiO2 crystal form was measured with X-ray powder diffraction and their micro-morphology was observed with SEM. Experimental results indicate that these two binders do not affect the crystal form transformation of TiO2, but silica gol can increase the specific surface area of TiO2 photocatalyst obviously and the addition of sodium silicate can decrease it. In all, silica gol is a better candidate than sodium silicate for higher catalysis property. In conclusion, 6% silica gol is the optimal addition concentration. Under this condition, the ratio of anatase to rutile TiO2 is 64:36, the specific area is 29.67 m^2/g, and as expected, the degradation rate of methyl orange could be as high as 90% after irradiation for 5 days.
文摘To improve the wear resistance of magnesium alloy,the laser surface cladding of AZ31B magnesium alloy with Al-12 % Si and Al2O3-40 % TiO2 composite powders (in the wt.% ratio of 10:1,6:1,4:1) were investigated by using a 5kW continuous wave CO2 laser.A detailed microstructure and phase analysis of the surface modified layer were studied by optics microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy (EDS),X-ray diffraction(XRD).The microstructure of the surface modified layers mainly consist of Al-Mg matrix,dendrite precipitates and Al2O3,TiO2 ceramic particles.The microhardness of the surface layer were measured and wear resistance property were evaluated in details.The average microhardness of the surface layers were significantly improved to 250HV0.05 as compared with 50HV0.05 of the AZ31B substrate.The results showed that the wear resistance of the laser surface modified samples was considerably improved as compared as the as-received specimen.
基金Project supported by the Innovation Foundation of BUAA for PhD Graduates (Grant No. 292122)Equipment Research Foundation of China
文摘TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn-TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.
文摘Esters of 2- and 3-monochloropropane-1,2-diol (MCPD) are significative contaminants of processed edible oils used as foods or food ingredients. The aim of this study was to develop and validate a new method by GC-MS for the simultaneous quantification of 2 and 3-MCPD esters in infant milk powder and edible vegetable oils. The developed protocol included fat fraction in infant milk powder and edible vegetable oils samples was extracted and treated with sodium methylate-methanol to cleave the ester bonds of the 2- and 3-MCPD esters, moreover, standard samples of deuterium isotope-labeled 2- and 3-MCPD palmitic acid double esters and stearic acid double esters were used as the internal standards. Furthermore, this method was validated when it was applied to food products, concrete manifestation in its good accuracy (the recovery of MCPD esters ranged from 86% to 114%), high sensitivity (the LOD of 3-MCPD and 2-MCPD esters were 0.025 and 0.020 mg/kg, LOQ were 0.075, 0.060 mg/kg, respectively) and satisfactory repeatability (RSD below 6.8%) for all analytes. In the 150 commercial edible vegetable oils and infant formula milk powder samples, we obtained a preliminary profile of MCPD ester contamination.
文摘化工、纺织印染与农药化肥等产业的蓬勃发展推动着人类社会的进步,但同时也给环境治理带来了巨大难题。目前,光催化降解局限于在特定波长下针对单一有机污染物进行降解,然而现实中的情况往往更复杂。因此,开发一种多功能光催化材料用于光催化降解不同有机污染物显得尤为重要。采用一步无模板溶剂热法合成了核壳结构的C-TiO_(2)复合材料前驱体,并在氩气气氛下煅烧得到高结晶度的C-TiO_(2)复合光催化材料。运用SEM、TEM、XRD和TG等表征手段对材料进行表征,结论如下:550℃煅烧时的样品为包含少量碳的高结晶度的锐钛矿相TiO 2,且550℃煅烧时的样品依然保持了完整的核壳结构。此外,C-TiO_(2)复合材料的比表面积高达85.69 m 2·g^(-1),平均孔径为16.4 nm以及孔体积为0.423 m 3·g^(-1)。在UV-Vis光照射下,C-TiO_(2)复合材料分别对罗丹明B(RhB)、亚甲基蓝(MB)和刚果红(CR)3种染料显示出增强的光催化降解活性。