期刊文献+
共找到41,798篇文章
< 1 2 250 >
每页显示 20 50 100
The Wave Train Characteristics of Teleconnection Caused bythe Thermal Anomaly of the Underlying Surface ofthe Tibetan Plateau. Part I: Data Analysis 被引量:1
1
作者 周玉淑 邓国 +1 位作者 高守亭 徐祥德 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第4期583-593,共11页
The effect of the thermal anomaly of the underlying surface of the Tibetan Plateau in the previous win-ter and spring on the precipitation over the middle and lower reaches of the Yangtze River (MRYR) in the subsequen... The effect of the thermal anomaly of the underlying surface of the Tibetan Plateau in the previous win-ter and spring on the precipitation over the middle and lower reaches of the Yangtze River (MRYR) in the subsequent summer was investigated. Through data analysis, the influence of 'strong signal' features of the three-dimensional thermal anomaly of the Plateau upon the precipitation anomaly over MRYR in the sub-sequent summer was revealed. This feature of the signal shows that from 0 cm to 320 cm under the surface of the ground, the soil temperature anomalies of the Tibetan Plateau manifest out of phase distribution in flood years and drought years over MRYR. In flood years over MRYR, there is a positive soil temperature anomaly in the region of the southern Tibetan Plateau (to the south of 30癗) and a negative anomaly in the region of the middle and northern Tibetan Plateau (to the north of 30癗), while in drought years the distri-bution of the soil temperature anomaly is opposite to the one in flood years. The maximum value of the soil temperature anomaly lies in the levels between 40 cm and 160 cm under the surface of the ground. Mean-while, the data analysis also shows that the general circulation in the Northern Hemisphere may respond to the thermal anomaly of the Tibetan Plateau and form the propagation of a low frequency wave train with a seasonal time scale, and this wave train may affect the precipitation over MRYR in the subsequent summer. Analyses reveal that the thermal anomaly of the underlying surface of the Tibetan Plateau in the previous winter and spring is one of the key influencing factors for the subsequent summer precipitation over MRYR. 展开更多
关键词 the tibetan plateau thermal anomaly the middle and lower reaches of the Yangtze River (MRYR) precipitation anomaly
下载PDF
Convection-Permitting Simulations of Current and Future Climates over the Tibetan Plateau 被引量:1
2
作者 Liwei ZOU Tianjun ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1901-1916,共16页
The Tibetan Plateau(TP)region,also known as the“Asian water tower”,provides a vital water resource for downstream regions.Previous studies of water cycle changes over the TP have been conducted with climate models o... The Tibetan Plateau(TP)region,also known as the“Asian water tower”,provides a vital water resource for downstream regions.Previous studies of water cycle changes over the TP have been conducted with climate models of coarse resolution in which deep convection must be parameterized.In this study,we present results from a first set of highresolution climate change simulations that permit convection at approximately 3.3-km grid spacing,with a focus on the TP,using the Icosahedral Nonhydrostatic Weather and Climate Model(ICON).Two 12-year simulations were performed,consisting of a retrospective simulation(2008–20)with initial and boundary conditions from ERA5 reanalysis and a pseudoglobal warming projection driven by modified reanalysis-derived initial and boundary conditions by adding the monthly CMIP6 ensemble-mean climate change under the SSP5-8.5 scenario.The retrospective simulation shows overall good performance in capturing the seasonal precipitation and surface air temperature.Over the central and eastern TP,the average biases in precipitation(temperature)are less than−0.34 mm d−1(−1.1℃)throughout the year.The simulated biases over the TP are height-dependent.Cold(wet)biases are found in summer(winter)above 5500 m.The future climate simulation suggests that the TP will be wetter and warmer under the SSP5-8.5 scenario.The general features of projected changes in ICON are comparable to the CMIP6 ensemble projection,but the added value from kilometer-scale modeling is evident in both precipitation and temperature projections over complex topographic regions.These ICON-downscaled climate change simulations provide a high-resolution dataset to the community for the study of regional climate changes and impacts over the TP. 展开更多
关键词 dynamical downscaling convection-permitting tibetan plateau pseudo-global warming
下载PDF
The Tibetan Plateau bridge:Influence of remote teleconnections from extratropical and tropical forcings on climate anomalies 被引量:2
3
作者 Yimin Liu Wei Yu +3 位作者 Jilan Jiang Tingting Ma Jiangyu Mao Guoxiong Wu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第1期28-33,共6页
本文回顾了青藏高原桥梁作用方面的最新研究进展,涉及北大西洋气候异常对春,夏亚洲季风和厄尔尼诺-南方涛动(ENSO)事件的遥相关影响,热带海洋异常和中国东部极端气候异常之间的联系以及华南春雨的季节内变化等.介绍了年际时间尺度上,冬... 本文回顾了青藏高原桥梁作用方面的最新研究进展,涉及北大西洋气候异常对春,夏亚洲季风和厄尔尼诺-南方涛动(ENSO)事件的遥相关影响,热带海洋异常和中国东部极端气候异常之间的联系以及华南春雨的季节内变化等.介绍了年际时间尺度上,冬-春季北大西洋海表温度强迫如何影响南亚季风的季节性转变以及随后ENSO事件的触发.5月份青藏高原上空显著的负感热斜压结构,为北大西洋影响亚洲季风和ENSO提供了桥梁效应,夏季北大西洋涛动与华东夏季降水变化显著相关,高原潜热在这一关系中起着桥梁作用.另一方面,这种高原桥梁效应也存在于从热带海洋异常到东亚夏季极端降水事件的连接中,以及从中纬度波列到华南春雨准双周振荡的联系中. 展开更多
关键词 青藏高原桥梁作用 遥相关 北大西洋 厄尔尼诺-南方涛动 热带对流 气候异常和极端事件
下载PDF
Multiple Uplift and Exhumation of the Southeastern Tibetan Plateau:Evidence from Low-Temperature Thermochronology 被引量:1
4
作者 WU Limin PENG Touping +6 位作者 FAN Weiming ZHAO Guochun GAO Jianfeng DONG Xiaohan PENG Shili MIN Kang Tin Aung MYINT 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期569-584,共16页
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat... Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate. 展开更多
关键词 apatite fission track rapid cooling differential uplift MAGMATISM southeastern tibetan plateau
下载PDF
Deep tectonics and seismogenic mechanisms of the seismic source zone of the Jishishan M_(s)6.2 earthquake on December 18,2023,at the northeast margin of the Tibetan Plateau 被引量:1
5
作者 Qiong Wang ShuYu Li +3 位作者 XinYi Li Yue Wu PanPan Zhao Yuan Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期514-521,共8页
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t... On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault. 展开更多
关键词 Jishishan M_(s)6.2 earthquake crustal structure anisotropy stress and strain seismogenic mechanism northeast margin of the tibetan plateau
下载PDF
Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020:Role of Soil Moisture 被引量:1
6
作者 Yizhe HAN Dabang JIANG +2 位作者 Dong SI Yaoming MA Weiqiang MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1527-1538,共12页
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N... The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC. 展开更多
关键词 tibetan plateau atmospheric heat source Northeast China summer precipitation soil moisture
下载PDF
Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020 被引量:1
7
作者 Jinglong Huang Chaofan Li +2 位作者 Binghao Jia Chujie Gao Ruichao Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期34-39,共6页
The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti... The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming. 展开更多
关键词 Active layer thickness PERMAFROST tibetan plateau Climatological characteristics
下载PDF
Projected changes in extreme snowfall events over the Tibetan Plateau based on a set of RCM simulations 被引量:1
8
作者 Yuanhai Fu Xuejie Gao 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期3-9,共7页
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr... Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas. 展开更多
关键词 Extreme snowfall Regional climate model tibetan plateau Climate change
下载PDF
Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020 被引量:1
9
作者 Ying Na Chaofan Li Riyu Lu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期16-21,共6页
The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m... The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region. 展开更多
关键词 Isolated deep convection tibetan plateau Climatological characteristics Precipitation contribution Extreme precipitation
下载PDF
Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity 被引量:1
10
作者 Hui Qiu Tianjun Zhou +3 位作者 Liwei Zou Jie Jiang Xiaolong Chen Shuai Hu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期40-46,共7页
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse... Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes. 展开更多
关键词 tibetan plateau Climate sensitivity Precipitation projection Water availability projection
下载PDF
Mechanism of Diabatic Heating on Precipitation and the Track of a Tibetan Plateau Vortex over the Eastern Slope of the Tibetan Plateau
11
作者 Yuanchang DONG Guoping LI +3 位作者 Xiaolin XIE Long YANG Peiwen ZHANG Bo ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期155-172,共18页
Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How... Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP. 展开更多
关键词 eastern slope of the tibetan plateau diabatic heating tibetan plateau vortex precipitation distribution TRACK
下载PDF
Principle of Hydrogen Isotope Geochemistry Paleo-altimeter and its Potential in Reconstructing Paleo-elevation of the Southeastern Tibetan Plateau
12
作者 CUI Fengzhen LIU-ZENG Jing +4 位作者 LI Yunshuai XU Qiang TANG Maoyun WANG Heng SUN Zhaotong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期1051-1063,共13页
The reconstruction of paleo-elevation serves a dual purpose to enhance our comprehension of geodynamic processes affecting terrestrial landforms and to contribute significantly to the interpretation of atmospheric cir... The reconstruction of paleo-elevation serves a dual purpose to enhance our comprehension of geodynamic processes affecting terrestrial landforms and to contribute significantly to the interpretation of atmospheric circulation and biodiversity.The oxygen(δ~(18)O_w)and deuterium(δD_w)isotopes in atmospheric precipitation are systematically depleted with the increase of altitude,which are typical and widely applicated paleo-altimeters.The utilization of hydrogen isotope of hydrous silicate minerals within the shear zone system,volcanic glass,and plant leaf wax alkanes offers valuable insights for addressing evaporation and diagenesis.In this paper,we review the principle,application conditions,and influencing factors of the hydrogen isotope paleo-altimeter.In addition,we discuss the feasibility of utilizing this technique for quantitatively estimating the paleo-elevation of the southeastern Tibetan Plateau,where multiple shear zones extend over hundred kilometers parallel to the topographic gradient. 展开更多
关键词 paleo-elevation hydrogen isotope hydrous silicate minerals volcanic glass tibetan plateau
下载PDF
Dynamic simulation insights into friction weakening effect on rapid long-runout landslides:A case study of the Yigong landslide in the Tibetan Plateau,China
13
作者 Zi-zheng Guo Xin-yong Zhou +3 位作者 Da Huang Shi-jie Zhai Bi-xia Tian Guang-ming Li 《China Geology》 CAS CSCD 2024年第2期222-236,共15页
This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plate... This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case,and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code.Results showed that the friction decreased quickly from 0.64(the peak)to 0.1(the stead value)during the 5s-period after the sliding initiation,which explained the behavior of rapid movement of the landslide.The monitored balls set at different sections of the mass showed similar variation characteritics regarding the velocity,namely evident increase at the initial phase of the movement,followed by a fluctuation phase and then a stopping one.The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation.The spreading distance of the landslide was calculated at the two-dimension(profile)and three-dimension scale,respectively.Compared with the simulation result without considering friction weakening effect,our results indicated a max distance of about 10 km from the initial unstable position,which fit better with the actual situation. 展开更多
关键词 Rapid long-runout landslide PFC Friction weakening Three-dimension Numerical simulation tibetan plateau Hydrogeology Engineering Geological hazards survey engineering
下载PDF
Westerlies Affecting the Seasonal Variation of Water Vapor Transport over the Tibetan Plateau Induced by Tropical Cyclones in the Bay of Bengal
14
作者 Xiaoli ZHOU Wen ZHOU +3 位作者 Dongxiao WANG Qiang XIE Lei YANG Qihua PENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期881-893,共13页
This study investigates the activity of tropical cyclones(TCs)in the Bay of Bengal(BOB)from 1979 to 2018 to discover the mechanism affecting the contribution rate to the meridional moisture budget anomaly(MMBA)over th... This study investigates the activity of tropical cyclones(TCs)in the Bay of Bengal(BOB)from 1979 to 2018 to discover the mechanism affecting the contribution rate to the meridional moisture budget anomaly(MMBA)over the southern boundary of the Tibetan Plateau(SBTP).May and October–December are the bimodal phases of BOB TC frequency,which decreases month by month from October to December and is relatively low in May.However,the contribution rate to the MMBA is the highest in May.The seasonal variation in the meridional position of the westerlies is the key factor affecting the contribution rate.The relatively southern(northern)position of the westerlies in November and December(May)results in a lower(higher)contribution rate to the MMBA.This mechanism is confirmed by the momentum equation.When water vapor enters the westerlies near the trough line,the resultant meridional acceleration is directed north.It follows that the farther north the trough is,and the farther north the water vapor can be transported.When water vapor enters the westerlies from the area near the ridge line,for Type-T(Type-R)TCs,water vapor enters the westerlies downstream of the trough(ridge).Consequently,the direction of the resultant meridional acceleration is directed south and the resultant zonal acceleration is directed east(west),which is not conducive to the northward transport of water vapor.This is especially the case if the trough or ridge is relatively south,as the water vapor may not cross the SBTP. 展开更多
关键词 tropical cyclone tibetan plateau Bay of Bengal moisture budget weste
下载PDF
Spatiotemporal Variability and Environmental Controls of Temperature Sensitivity of Ecosystem Respiration across the Tibetan Plateau
15
作者 Danrui SHENG Xianhong MENG +8 位作者 Shaoying WANG Zhaoguo LI Lunyu SHANG Hao CHEN Lin ZHAO Mingshan DENG Hanlin NIU Pengfei XU Xiaohu WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1821-1842,共22页
Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of... Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates. 展开更多
关键词 carbon cycle eddy covariance measurements ecosystem respiration Q_(10)value tibetan plateau climate change
下载PDF
Quantifying Contribution of Recycled Moisture to Precipitation in Temperate Glacier Region,Southeastern Tibetan Plateau,China
16
作者 MA Yanwei PU Tao +2 位作者 SHI Xiaoyi MA Xinggang YU Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第4期764-776,共13页
Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is t... Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area. 展开更多
关键词 recycled moisture stable isotope PRECIPITATION d-excess Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model southeastern tibetan plateau China
下载PDF
Advances in ice avalanches on the Tibetan Plateau
17
作者 TANG Minggao LI Guang +4 位作者 ZHAO Huanle XU Qiang WU Guangjian YANG Wei GUO Daojing 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1814-1829,共16页
As some of the greatest natural disasters in the cryosphere,ice avalanches(IAs)seriously threaten lives and cause catastrophic damage to the resource environment,but a comprehensive overview of the state of knowledge ... As some of the greatest natural disasters in the cryosphere,ice avalanches(IAs)seriously threaten lives and cause catastrophic damage to the resource environment,but a comprehensive overview of the state of knowledge on IAs remains lacking.We summarized 63 IAs on the Tibetan Plateau(TP)since the 20th century,of which,over 20 IAs occurred after the 21st century.The distributions of IAs are mainly concentrated in the southeastern and northwestern TP,and the occurrence time of IAs is mostly concentrated from July to September.We highlight recent advances in mechanical properties and genetic mechanisms of IAs and emphasize that temperature,rainfall,and seismicity are the inducing factors.The failure modes of IAs are summarized into 6 categories by examples:slip pulling type,slip toppling type,slip breaking type,water level collapse type,cave roof collapse type,and wedge failure type.Finally,we deliver recommendations concerning the risk assessment and prediction of IAs.The results provide important scientific value for addressing climate change and resisting glacier-related hazards. 展开更多
关键词 Ice avalanche Global warming Genetic mechanism Risk assessment tibetan plateau
下载PDF
Spatial structural characteristics of the Deda ancient landslide in the eastern Tibetan Plateau:Insights from Audio-frequency Magnetotellurics and the Microtremor Survey Method
18
作者 Zhen-dong Qiu Chang-bao Guo +5 位作者 Yi-ying Zhang Zhi-hua Yang Rui-an Wu Yi-qiu Yan Wen-kai Chen Feng Jin 《China Geology》 CAS CSCD 2024年第2期188-202,共15页
It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the lan... It is of crucial importance to investigate the spatial structures of ancient landslides in the eastern Tibetan Plateau’s alpine canyons as they could provide valuable insights into the evolutionary history of the landslides and indicate the potential for future reactivation.This study examines the Deda ancient landslide,situated in the Chalong-ranbu fault zone,where creep deformation suggests a complex underground structure.By integrating remote sensing,field surveys,Audio-frequency Magnetotellurics(AMT),and Microtremor Survey Method(MSM)techniques,along with engineering geological drilling for validation,to uncover the landslide’s spatial feature s.The research indicates that a fault is developed in the upper part of the Deda ancient landslide,and the gully divides it into Deda landslide accumulation zoneⅠand Deda landslide accumulation zoneⅡin space.The distinctive geological characteristics detectable by MSM in the shallow subsurface and by AMT in deeper layers.The findings include the identification of two sliding zones in the Deda I landslide,the shallow sliding zone(DD-I-S1)depth is approximately 20 m,and the deep sliding zone(DD-I-S2)depth is 36.2-49.9 m.The sliding zone(DD-Ⅱ-S1)depth of the DedaⅡlandslide is 37.6-43.1 m.A novel MSM-based method for sliding zone identification is proposed,achieving less than 5%discrepancy in depth determination when compared with drilling data.These results provide a valuable reference for the spatial structural analysis of large-deepseated landslides in geologically complex regions like the eastern Tibetan Plateau. 展开更多
关键词 Ancient landslide Remote sensing Audio-frequency Magnetotellurics(AMT) Microtremor Survey Method(MSM) Geological drilling engineering Spatial structure tibetan plateau Geological hazard survey engineering
下载PDF
Changes in Spring Snow Cover over the Eastern and Western Tibetan Plateau and Their Associated Mechanism
19
作者 Fangchi LIU Xiaojing JIA Wei DONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期959-973,共15页
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate... The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP. 展开更多
关键词 snow cover tibetan plateau long-term changes SPRING
下载PDF
Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau
20
作者 Shuo JIA Jiefan YANG Hengchi LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期97-114,共18页
Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polari... Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polarization radar.The time-height series of radar physical variables and mesoscale horizontal divergence δderived by quasi-vertical profiles(QVPs)indicated that the dendritic growth layer(DGL,-20°C to-10°C)was ubiquitous,with large-value zones of K_(DP)(specific differential phase),Z_(DR)(differential reflectivity),or both,and corresponded to various dynamic fields(ascent or descent).Ascents in the DGL of cloud systems with vigorous vertical development were coincident with large-value zones of Z_(DR),signifying ice crystals with a large axis ratio,but with no obvious large values of K_(DP),which differs from previous findings.It is speculated that ascent in the DGL promoted ice crystals to undergo further growth before sinking.If there was descent in the DGL,a high echo top corresponded to large values of K_(DP),denoting a large number concentration of ice crystals;but with the echo top descending,small values of K_(DP) formed.This is similar to previous results and reveals that a high echo top is conducive to the generation of ice crystals.When ice particles fall to low levels(-10℃ to 0℃),they grow through riming,aggregation,or deposition,and may not be related to the kinematic structure.It is important to note that this study was only based on a limited number of cases and that further research is therefore needed. 展开更多
关键词 tibetan plateau polarimetric variables MICROPHYSICS dendritic growth layer kinematic structure aggregation RIMING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部