期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Analysis of Reservoir Forming Conditions and Prediction of Continuous Tight Gas Reservoirs for the Deep Jurassic in the Eastern Kuqa Depression,Tarim Basin 被引量:15
1
作者 ZOU Caineng JIA Jinhua +1 位作者 TAO Shizhen TAO Xiaowan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1173-1186,共14页
The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic ... The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential. 展开更多
关键词 forming condition continuous tight gas reservoir deep Jurassic eastern Kuqa Depression
下载PDF
Geological characteristics and accumulation mechanisms of the "continuous" tight gas reservoirs of the Xu2 Member in the middle-south transition region,Sichuan Basin,China 被引量:12
2
作者 Zou Caineng Gong Yanjie +1 位作者 Tao Shizhen Liu Shaobo 《Petroleum Science》 SCIE CAS CSCD 2013年第2期171-182,共12页
"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source ro... "Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs. 展开更多
关键词 Geological characteristics accumulation mechanism "continuous" tight gas reservoir Xu2Member middle-south transition region Sichuan Basin
下载PDF
Blasingame production decline type curves for analysing a multi-fractured horizontal well in tight gas reservoirs 被引量:4
3
作者 魏明强 段永刚 +3 位作者 陈伟 方全堂 李政澜 郭希冉 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期394-401,共8页
Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods fo... Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs. 展开更多
关键词 tight gas reservoir fractured horizontal well unstructured grid production decline type curves
下载PDF
Sedimentology and Ichnology of Upper Montney Formation Tight Gas Reservoir, Northeastern British Columbia, Western Canada Sedimentary Basin 被引量:3
4
作者 Edwin I. Egbobawaye 《International Journal of Geosciences》 2016年第12期1357-1411,共56页
Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as ... Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as tight gas reservoir of the Montney Formation, which consists of siltstone with subordinate interlaminated very fine-grained sandstone. The Montney Formation resource play is one of Canada’s prime unconventional hydrocarbon reservoir, with reserve estimate in British Columbia (Natural Gas reserve = 271 TCF), Liquefied Natural Gas (LNG = 12,647 million barrels), and oil reserve (29 million barrels). Based on sedimentological and ichnological criteria, five lithofacies associations were identified in the study interval: Lithofacies F-1 (organic rich, wavy to parallel laminated, black colored siltstone);Lithofacies F-2 (very fine-grained sandstone interbedded with siltstone);Lithofacies F-3A (bioturbated silty-sandstone attributed to the Skolithos ichnofacies);Lithofacies F-3B (bioturbated siltstone attributed to Cruziana ichnofacies);Lithofacies F-4 (dolomitic, very fine-grained sandstone);and Lithofacies F-5 (massive siltstone). The depositional environments interpreted for the Montney Formation in the study area are lower shoreface through proximal offshore to distal offshore settings. Rock-Eval data (hydrogen Index and Oxygen Index) shows that Montney sediments contains mostly gas prone Type III/IV with subordinate Type II kerogen, TOC ranges from 0.39 - 3.54 wt% with a rare spike of 10.9 wt% TOC along the Montney/Doig boundary. Vitrinite reflectance data and Tmax show that thermal maturity of the Montney Formation is in the realm of “peak gas” generation window. Despite the economic significance of the Montney unconventional “resource-play”, however, the location and predictability of the best reservoir interval remain conjectural in part because the lithologic variability of the optimum reservoir lithologies has not been adequately characterized. This study presents lithofacies and ichnofacies analyses of the Montney Formation coupled with Rock-Eval geochemistry to interpret the sedimentology, ichnology, and reservoir potential of the Montney Formation tight gas reservoir in Fort St. John study area (T86N, R23W and T74N, R13W), northeastern British Columbia, western Canada. 展开更多
关键词 Montney Formation SEDIMENTOLOGY ICHNOLOGY tight gas reservoir Oil and gas Petroleum Geology British Columbia Western Canada Sedimentary Basin
下载PDF
Investigation of influence factors on CO_(2) flowback characteristics and optimization of flowback parameters during CO_(2) dry fracturing in tight gas reservoirs
5
作者 Xiao-Mei Zhou Lei Li +4 位作者 Yong-Quan Sun Ran Liu Ying-Chun Guo Yong-Mao Hao Yu-Liang Su 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3553-3566,共14页
CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that a... CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters. 展开更多
关键词 CO_(2)fracturing tight gas reservoir Fracturing fluid flowback Parameter optimization
下载PDF
Simulation of Gas-Water Two-Phase Flow in Tight Gas Reservoirs Considering the Gas Slip Effect
6
作者 Mingjing Lu Zenglin Wang +3 位作者 Aishan Li Liaoyuan Zhang Bintao Zheng Zilin Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1269-1281,共13页
A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are s... A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs. 展开更多
关键词 tight gas reservoir gas-water two-phase flow numerical simulation fractured horizontal well gas slip effect
下载PDF
A new method to calculate the productivity index for vertical fractured well of tight gas reservoir
7
作者 Li Junjian Jiang Hanqiao +1 位作者 Gao Huimei He Yingfu 《Engineering Sciences》 EI 2008年第3期93-96,共4页
Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability var... Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability varies with experimental law of the pseudo pressure drop, according to concepts of perturbable ellipses and equivalent developing regulations, the calculation method of stable production of hydraulically fractured gas well in low permeability reservoirs is investigated with threshold pressure. And productivity curve is drawn and analyzed. The result shows that, permeability modulus and threshold pressure have effect on production of fractured gas well. The higher the permeability modulus and the threshold pressure, the lower the production is. Therefore, the impact of stress sensitive and threshold pressure must he considered when analyzing the productivity of vertical fracture well in low permeability gas reservoir. 展开更多
关键词 tight gas reservoir stress sensitive threshold pressure vertical fracture well productivity analysis
下载PDF
A Study of Solid-Free Drilling Fluid for Tight Gas Reservoirs
8
作者 Wenwu Zheng Fu Liu +3 位作者 Jing Han Binbin He Xintong Li Qichao Cao 《Open Journal of Yangtze Oil and Gas》 2021年第1期13-23,共11页
This project is explaining a laboratory development of a solid free drilling fluid formula that could be potentially used in tight gas reservoirs. The configuration of the weak gel fluid WGL-1, which is resistant to h... This project is explaining a laboratory development of a solid free drilling fluid formula that could be potentially used in tight gas reservoirs. The configuration of the weak gel fluid WGL-1, which is resistant to high temperature and high salt, was tested, and concluded that its gelling properties, salt and temperature resistance, and environmental protection were all in line with industry requirements. The final drilling fluid formula was developed as: water + (0.3% ~ 0.5%) NaOH + 5% KCl + 2% WGL-1 + 5% NaCl + (1.0% ~ 2.0%) HBFR Anti-high temperature fluid loss agent + 2% Polyol + (1.5% ~ 2.0%) SDL-1 Lubricant + 0.4% A4O1. The performance of the liquid was tested for temperature resistance, inhibition, gas formation protection effect, plugging performance, and static settlement stability. It was concluded that the temperature resistance performance is satisfied at 150°C, and the cuttings recovery rate is as high as 96.78%. It has good performance in inhibiting water dispersion and swelling of cuttings. The permeability recovery value reaches 88.9%, which meets the requirements of gas formation protection. The SSSI value shows that its settlement stability is good;under high temperature and high pressure, its sealing performance is good. This drilling fluid system has achieved the expected results and laid a foundation for further promoting the development of solid-free drilling fluid systems. The future development direction of solid-free drilling fluids is pointed out, to the improvement of properties to be applied in high temperature environment and have high salt resistance capacity. 展开更多
关键词 tight gas reservoir Solid-Free Drilling Fluid Temperature Resistance Environmental Protection Weak Gel
下载PDF
A new model for predicting irreducible water saturation in tight gas reservoirs 被引量:2
9
作者 Yu-Liang Su Jin-Gang Fu +4 位作者 Lei Li Wen-Dong Wang Atif Zafar Mian Zhang Wei-Ping Ouyang 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1087-1100,共14页
The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple fa... The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature. 展开更多
关键词 Fractal theory Stress dependence effect Capillary model tight sandstone gas reservoir Irreducible water saturation
下载PDF
Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs
10
作者 Fang Li Juan Wu +3 位作者 Haiyong Yi Lihong Wu Lingyun Du Yuan Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1015-1030,共16页
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s... Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results. 展开更多
关键词 Well spacing for primary development tight gas reservoir fractured horizontal well threshold pressure gradient stress sensitivity
下载PDF
Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions
11
作者 Yan Liu Tianli Sun +1 位作者 Bencheng Wang Yan Feng 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1165-1180,共16页
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte... A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small. 展开更多
关键词 tight sandstone gas reservoir fracture propagation flowback rate gas production law water production law influencing factor
下载PDF
WELL TESTING ANALYSIS FOR HORIZONTAL WELL WITH CONSIDERATION OF THRESHOLD PRESSURE GRADIENT IN TIGHT GAS RESERVOIRS 被引量:9
12
作者 GUO Jing-jing ZHANG Su +2 位作者 ZHANG Lie-hui QING Hairuo LIU Qi-guo 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第4期561-568,共8页
A fundamental solution for homogeneous reservoir in infinite space is derived by using the point source function with the consideration of the threshold pressure gradient. The fundamental solution of the continuous po... A fundamental solution for homogeneous reservoir in infinite space is derived by using the point source function with the consideration of the threshold pressure gradient. The fundamental solution of the continuous point source function is then derived based on the Green function. Various boundary conditions of the reservoirs are considered for this case and the corresponding solutions are obtained through the mirror image reflection and the principle of superimposition. The line source solution is obtained by integration. Subsequently, the horizontal-well bottom hole pressure response function for a non-linear gas flow in the homogeneous gas reservoir is obtained, and the response curve of the dimensionless bottom hole pressure and the derivative for a horizontal well in the homogeneous gas reservoir are obtained. In the end, the sensitivities of the relevant parameters are analyzed, The well test model presented in this paper can be used as the basis of the horizontal well test analysis for tight gas reservoirs. 展开更多
关键词 horizontal well non-linear gas flow threshold pressure gradient tight gas reservoir
原文传递
An optimal fracture geometry design method of fractured horizontal wells in heterogeneous tight gas reservoirs 被引量:4
13
作者 ZENG FanHui KE YuBiao GUO JianChun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第2期241-251,共11页
In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method ... In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method and influence function, the dimensionless fracture productivity index is obtained and expressed in the function of proppant volume and fracture geometry at the pseu- do-steady state. With the iterative method, the effectively propped permeability, kfe, is corrected using the i^-situ Reynolds number, NRe. The goal of this paper is to present a new UFD extension to design the proppant volume and the optimal fracture geometry. The results show that there exists an optimal proppant volume for a certain reservoir. The small aspect ratio (yJXe) and high permeability reservoirs need short and wide fractures to diminish the non-Darcy effect. On the contrary, long and narrow fractures are required for the large aspect ratio and low permeability reservoirs. A small proppant volame is prone to creating long fractures, while a relatively large proppant volume creates wide fractures. The new extension can be used to evaluate the previous fracture parameters and design the following fracture parameters of the fractured horizontal well in heterogeneous tight gas reservoirs, with the non-Darcy effect taken into account. 展开更多
关键词 tight gas reservoir HETEROGENEITY non-Darcy effect fractured horizontal well fracture geometry design
原文传递
Dual-porosity model of rate transient analysis for horizontal well in tight gas reservoirs with consideration of threshold pressure gradient 被引量:1
14
作者 Li-na Cao Xiao-ping Li +2 位作者 Ji-qiang Zhang Cheng Luo Xiao-hua Tan 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第5期872-881,共10页
Most researches of the threshold pressure gradient in tight gas reservoirs are experimental and mainly focus on the transient pressure response, without paying much attention to the transient rate decline. This paper ... Most researches of the threshold pressure gradient in tight gas reservoirs are experimental and mainly focus on the transient pressure response, without paying much attention to the transient rate decline. This paper establishes a dual-porosity rate transient decline model for the horizontal well with consideration of the threshold pressure gradient, which represents the non-Darcy flow in a fracture system. The solution is obtained by employing the Laplace transform and the orthogonal transform. The bi-logarithmic type curves of the dimensionless production rate and derivative are plotted by the Stehfest numerical inversion method. Seven different flow regimes are identified and the effects of the influence factors such as the threshold pressure gradient, the elastic storativity ratio, and the cross flow coefficient are discussed. The presented research could interpret the production behavior more accurately and effectively for tight gas reservoirs. 展开更多
关键词 Rate transient analysis horizontal well DUAL-POROSITY threshold pressure gradient tight gas reservoirs
原文传递
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:4
15
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
下载PDF
Enhancing recovery and sensitivity studies in an unconventional tight gas condensate reservoir 被引量:3
16
作者 Min Wang Shengnan Chen Menglu Lin 《Petroleum Science》 SCIE CAS CSCD 2018年第2期305-318,共14页
The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion o... The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion of gas leaves the valuable condensate behind. In this paper, three enhanced gas recovery (EGR) methods including produced gas injection, CO2 injection and water injection are investigated to increase the well productivity for a tight gas condensate reservoir in the Montney Formation, Canada. The production performance of the three EGR methods is compared and their economic feasibility is evaluated. Sensitivity analysis of the key factors such as primary production duration, bottom-hole pressures, and fracture conductivity is conducted and their effects on the well production performance are analyzed. Results show that, compared with the simple depletion method, both the cumulative gas and condensate production increase with fluids injected. Produced gas injection leads to both a higher gas and condensate production compared with those of the CO2 injection, while waterflooding suffers from injection difficulty and the corresponding low sweep efficiency. Meanwhile, the injection cost is lower for the produced gas injection due to the on-site available gas source and minimal transport costs, gaining more economic benefits than the other EGR methods. 展开更多
关键词 tight gas condensate reservoirs Enhanced/improved gas recovery Produced gas injection Sensitivity study Economic benefit
下载PDF
Production forecasting methods for different types of gas reservoirs
17
作者 Fanliao Wang Shucheng Liu +5 位作者 Ying Jia Anrong Gao Kun Su Yanqing Liu Jing Du Liru Wang 《Energy Geoscience》 EI 2024年第3期275-283,共9页
Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using l... Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended. 展开更多
关键词 Production prediction Life cycle model Carbonate gas reservoir Low-permeability tight sandstone gas reservoir
下载PDF
Quantitative characterization of tight gas sandstone reservoirs using seismic data via an integrated rock-physics-based framework
18
作者 Zhi-Qi Guo Xiao-Ying Qin Cai Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3428-3440,共13页
Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is ch... Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region. 展开更多
关键词 tight gas sandstone reservoirs Quantitative reservoir characterization Rock-physics-based framework Microfracture porosity Rock physics template
下载PDF
Types and genesis of sweet spots in the tight sandstone gas reservoirs:Insights from the Xujiahe Formation,northern Sichuan Basin,China
19
作者 Yanqing Huang Ai Wang +2 位作者 Kaihua Xiao Tian Lin Wujun Jin 《Energy Geoscience》 2022年第3期270-281,共12页
Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter r... Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter referred to as Xu2 Member)in the Yuanba area,northern Sichuan Basin,were studied.Combined with the analysis of the main controlling factors of production capacity,the types and characteristics of the sweet spots in the tight sandstone gas reservoir were determined.The evaluation standards and geological models of the sweet spots were established.The results are as follows:(1)There are bedding-parallel fracture-,fault-induced fracture-,and pore-dominated sweet spots in the tight sandstone gas reservoirs of the Xu2 Member.(2)The bedding parallel fracture-dominated sweet spots have developed in quartz sandstones with well-developed horizontal fractures and micro-fractures.They are characterized by high permeability and high gas output during production tests.This kind of sweet spots is thin and shows a limited distribution.Their logging responses show extremely low gamma-ray(GR)values and medium-high AC values.Moreover,the bedding parallel fracture-dominated sweet spots can be mapped using seismic methods.(3)The fault-induced fracture-dominated sweet spots have welldeveloped medium-and high-angle shear fractures.Their logging responses show an increase in peaks of AC values and total hydrocarbon content and a decrease in resistivity.Seismically,the areas with welldeveloped fault-induced fracture-dominated sweet spots can be effectively mapped using the properties such as seismic entropy and maximum likelihood.(4)The pore-dominated sweet spots are developed in medium-grained feldspathic litharenites with good reservoir properties.They are thick and widely distributed.(5)These three types of sweet spots are mainly determined by sedimentation,diagenesis,and tectonism.The bedding parallel fracture-dominated sweet spots are distributed in beachbar quartz sandstones on the top of the 1st sand layer group in the Xu2 Member,which develops in a shore-shallow lake environment.The fault-induced fracture-dominated sweet spots mainly occur near faults.They are increasingly developed in areas closer to faults.The pore-dominated sweet spots are primarily distributed in the 2nd and 3rd sand layer groups,which lie in the development areas of distributary channels near provenances at western Yuanba area.Based on the geological and seismic data,a comprehensive evaluation standard for these three types of sweet spots of the tight sandstone reservoirs in the Xu2 Member has been established,which,on the one hand,lays the foundation for the development and evaluation of the gas reservoir,and on the other hand,deepens the understanding of sweet spot in the tight sandstone gas reservoirs. 展开更多
关键词 Sweet spot Evaluation standard tight sandstone gas reservoirs Xujiahe Formation Yuanba area Northeastern Sichuan Basin
下载PDF
Fluids discrimination by ray-path elastic impedance inversion: A successful case from Sulige tight gas field 被引量:1
20
作者 Wang Da-Xing Wang Hao-Fan +3 位作者 Ma Jin-Feng Wang Yong-Gang Zhang Na Li Lin 《Applied Geophysics》 SCIE CSCD 2019年第2期218-232,254,共16页
Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely lo... Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely low and the relationship between gas and water is complicated.In this paper,we have proposed a comprehensive seismic fluid identification method that combines ray-path elastic impedance(REI)inversion with fluid substitution for tight reservoirs.This approach is grounded in geophysical theory,forward modeling,and real data applications.We used geophysics experiments in tight gas reservoirs to determine that Brie's model is better suited to calculate the elastic parameters of mixed fluids than the conventional Wood’s model.This yielded a more reasonable and accurate fluid substitution model for tight gas reservoirs.We developed a forward model and carried out inversion of REI.which reduced the non-uniqueness problem that has plagued elastic impedance inversion in the angle domain.Our well logging forward model in the ray-path domain with different fluid saturations based on a fluid substitution model proved that REI identifies fluids more accurately when the ray parameters are large.The distribution of gas saturation can be distinguished from the crossplot of REI(p=0.10)and porosity.The inverted ray-path elastic impedance profile was further used to predict the porosity and gas saturation profile.Our new method achieved good results in the application of 2D seismic data in the western Sulige gas field. 展开更多
关键词 tight gas reservoir ray-path elastic impedance fluids identification rock-physical model gas saturation inversion
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部