The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two t...In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.展开更多
This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the a...This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the adoption process from becoming aware of solar pumping systems to testing them, i.e. using them at least once, and then continuing to use them over time. The results show that the main variables affecting awareness of the use of solar pumping systems (PV) are age, marital status, experience, access to credit, the farmer’s knowledge of climate change, the farmer’s origin in the Thiès region and length of time in the Niayes area. The first use of PVs is influenced by factors such as the size of the plot, the distance of the plot from the main road or from the market. Finally, the decision to adopt or continue use is influenced by gender, experience, household size and access to credit. Surprisingly, access to credit does not affect the first use of solar pumping systems, but plays a key role in their continued use.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the...The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.展开更多
Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits ...Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.展开更多
We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be ...We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be transformed into a more powerful DS mode-locking state by optimizing the polarization and losses of intra-cavity pulses in the nonlinear polarization evolution regime. The operation mode between the NLP and DS can be switched, and the laser output performance in both modes has been studied. The main advantage of this work is switchable high-power operation between the NLP and DS. In comparison with conventional single-mode NLP fiber lasers, the multi-function high-power optical source will greatly push its application in supercontinuum generation, coherence tomography, and industrial processing.展开更多
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m...This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.展开更多
We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated het...We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.展开更多
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ...Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.展开更多
A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigat...A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.展开更多
BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitor...BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in...In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.展开更多
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ...Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.展开更多
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
文摘In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.
文摘This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the adoption process from becoming aware of solar pumping systems to testing them, i.e. using them at least once, and then continuing to use them over time. The results show that the main variables affecting awareness of the use of solar pumping systems (PV) are age, marital status, experience, access to credit, the farmer’s knowledge of climate change, the farmer’s origin in the Thiès region and length of time in the Niayes area. The first use of PVs is influenced by factors such as the size of the plot, the distance of the plot from the main road or from the market. Finally, the decision to adopt or continue use is influenced by gender, experience, household size and access to credit. Surprisingly, access to credit does not affect the first use of solar pumping systems, but plays a key role in their continued use.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金National Natural Science Foundation of China (No. 61975058)Blue Shield Technology Project,China (No. LD20170209)。
文摘The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.
基金the National Natural Science Foundation of China(Grant No.11904194).
文摘Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.
基金supported by the National Natural Science Foundation of China (Grant No. 12164030)the Major Program of the National Natural Science Foundation of China (Grant No. 12034020)+1 种基金Young Science and Technology Talents of Inner Mongolia, China (Grant No. NJYT22101)the Talent Development Fund of Inner Mongolia, China。
文摘We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be transformed into a more powerful DS mode-locking state by optimizing the polarization and losses of intra-cavity pulses in the nonlinear polarization evolution regime. The operation mode between the NLP and DS can be switched, and the laser output performance in both modes has been studied. The main advantage of this work is switchable high-power operation between the NLP and DS. In comparison with conventional single-mode NLP fiber lasers, the multi-function high-power optical source will greatly push its application in supercontinuum generation, coherence tomography, and industrial processing.
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金Funding by Ministerium für Wirtschaft,Innovation,Digitalisierung und Energie des Landes Nordrhein-Westfalen。
文摘This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.
基金Project supported by the National Natural Science Foundation of China(NSFC)(Grant No.12004309)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSQ036)the Scientific Research Program funded by Shaanxi Provincial Education Department(Grant No.20JK0947).
文摘We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.
基金supported by a Grant(2024-MOIS35-005)of Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior and Safety(MOIS,Korea).
文摘Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.
基金the National Natural Science Foundation of China(Research Project No.52169018).
文摘A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.
文摘BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0137200)National Natural Science Foundation of China(Grant Nos.52309147 and 52179114).
文摘In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03170)Science and Technology Project of Quzhou(Grant No.2022K98)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.