In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were sup...In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.展开更多
In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explai...In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed ...Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.展开更多
In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional...In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples.展开更多
A Cauchy problem for the elliptic equation with variable coefficients is considered. This problem is severely ill-posed. Then, we need use the regularization techniques to overcome its ill-posedness and get a stable n...A Cauchy problem for the elliptic equation with variable coefficients is considered. This problem is severely ill-posed. Then, we need use the regularization techniques to overcome its ill-posedness and get a stable numerical solution. In this paper, we use a modified Tikhonov regularization method to treat it. Under the a-priori bound assumptions for the exact solution, the convergence estimates of this method are established. Numerical results show that our method works well.展开更多
The inverse problem to determine the vibrating velocity from known exteriorfield measurement pressure, involves the solution of a discrete ill-posed problem. To facilitate thecomputation of a meaningful approximate so...The inverse problem to determine the vibrating velocity from known exteriorfield measurement pressure, involves the solution of a discrete ill-posed problem. To facilitate thecomputation of a meaningful approximate solution possible, the indirect boundary element method(IBEM) code for investigating vibration velocity reconstruction and Tikhonov regularization methodby means of singular value decomposition (SVD) are used. The amount of regularization is determinedby a regularization parameter. Its optimal value is given by the L-curve approach. Numerical resultsindicate the reconstructed normal surface velocity is a good approximation to the real source.展开更多
文摘In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.
基金Supported by the National Natural Science Foundation of China(Grant No.11471253 and No.11571311)
文摘In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
基金supported by the National Natural Science Foundation of China(41304022,41174026,41104047)the National 973 Foundation(61322201,2013CB733303)+1 种基金the Key laboratory Foundation of Geo-space Environment and Geodesy of the Ministry of Education(13-01-08)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.
基金supported by the National Natural Science Foundation of China(11961044)the Doctor Fund of Lan Zhou University of Technologythe Natural Science Foundation of Gansu Provice(21JR7RA214)。
文摘In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples.
文摘A Cauchy problem for the elliptic equation with variable coefficients is considered. This problem is severely ill-posed. Then, we need use the regularization techniques to overcome its ill-posedness and get a stable numerical solution. In this paper, we use a modified Tikhonov regularization method to treat it. Under the a-priori bound assumptions for the exact solution, the convergence estimates of this method are established. Numerical results show that our method works well.
文摘The inverse problem to determine the vibrating velocity from known exteriorfield measurement pressure, involves the solution of a discrete ill-posed problem. To facilitate thecomputation of a meaningful approximate solution possible, the indirect boundary element method(IBEM) code for investigating vibration velocity reconstruction and Tikhonov regularization methodby means of singular value decomposition (SVD) are used. The amount of regularization is determinedby a regularization parameter. Its optimal value is given by the L-curve approach. Numerical resultsindicate the reconstructed normal surface velocity is a good approximation to the real source.