BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes criti...BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.展开更多
BACKGROUND Uterine injury can cause uterine scarring,leading to a series of complications that threaten women’s health.Uterine healing is a complex process,and there are currently no effective treatments.Although our...BACKGROUND Uterine injury can cause uterine scarring,leading to a series of complications that threaten women’s health.Uterine healing is a complex process,and there are currently no effective treatments.Although our previous studies have shown that bone marrow mesenchymal stem cells(BMSCs)promote uterine damage repair,the underlying mechanisms remain unclear.However,exploring the specific regulatory roles of BMSCs in uterine injury treatment is crucial for further understanding their functions and enhancing therapeutic efficacy.AIM To investigate the underlying mechanism by which BMSCs promote the process of uterine healing.METHODS In in vivo experiments,we established a model of full-thickness uterine injury and injected BMSCs into the uterine wound.Transcriptome sequencing was per-formed to determine the enrichment of differentially expressed genes at the wound site.In in vitro experiments,we isolated rat uterine smooth muscle cells(USMCs)and cocultured them with BMSCs to observe the interaction between BMSCs and USMCs in the microenvironment.RESULTS We found that the differentially expressed genes were mainly related to cell growth,tissue repair,and angiogenesis,while the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)pathway was highly enriched.Quantitative reverse-transcription polymerase chain reaction was used to validate differentially expressed genes,and the results demonstrated that BMSCs can upregulate genes related to regeneration and downregulate genes related to inflammation.Coculturing BMSCs promoted the migration and proliferation of USMCs,and the USMC microenvironment promoted the myogenic differentiation of BMSCs.Finally,we validated the PI3K/AKT pathway in tissues and cells and showed that BMSCs activate the PI3K/AKT pathway to promote the regeneration of uterine smooth muscle both in vivo and in vitro.CONCLUSION BMSCs upregulated uterine wound regeneration and anti-inflammatory factors and enhanced uterine smooth muscle proliferation through the PI3K/AKT pathway both in vivo and in vitro.展开更多
BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear f...BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa B(NF-κB)signaling pathway,and exacerbate the inflammatory response,thus participating in the pathogenesis of ulcerative colitis(UC).Mesalazine is a commonly used drug in the clinical treatment of UC.However,further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells,downregulates the STAT3/NF-κB pathway to play a role in the treatment of UC.AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10(IL-10)-/-mice.METHODS The 24-week-old IL-10-/-mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group.Littermates of wild-type mice of the same age group served as the control.There were eight mice in each group,four males and four females.The severity of symptoms of spontaneous colitis in IL-10-/-mice was assessed using disease activity index scores.On day 15,the mice were sacrificed.The colon length was measured,and the histopathological changes and ultrastructure of colonic epithelial cells were detected.The protein expressions of STAT3,p-STAT3,NF-κB,IκB,p-IκB,and glucoseregulated protein 78 were identified using Western blotting.The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction.The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence.RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues,and alleviated the ER stress in epithelial cells of colitis mice.Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated,suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target.Mesalazine could down-regulate the protein expressions of p-STAT3,NF-κB and p-IκB,and down-regulate the mRNA expression of STAT3 and NF-κB.CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway.展开更多
BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations...BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.展开更多
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
Background:The aberrant intraellular expression of a mitochondrial aspartyl tRNA synthetase 2(DARS2)has been reported in human cancers.Nevertheless its critical role and detailed mechanism in lung adenocarcinoma(LUAD)...Background:The aberrant intraellular expression of a mitochondrial aspartyl tRNA synthetase 2(DARS2)has been reported in human cancers.Nevertheless its critical role and detailed mechanism in lung adenocarcinoma(LUAD)remain unexplored.Methods:Initially,The Cancer Genome Atlas(TCGA)based Gene Expression Profiling Interactive Analysis(GEPIA)database (http:/gepia.cancer-pku.cn/)was used to analyze the prognostic relevance of DARS2 expression in LUAD.Further,cell counting kit(CCK)8,immunostaining,and transwell invasion assays in LUAD cell lines in vitro,as well as DARS2 silence on LUAD by tumorigenicity experiments in wivo in nude mice,were performed.Besides,we analyzed the expression levels of p-PI3K(phosphorylated Phosphotylinosital3 kinase),PI3K,AKT(Protein Kinase B),p-AKT(phosphorylated Protein Kinase B),PCNA(proliferating cell nudear antigen),cleaved-caspase 3,E cadherin,and N-cadherin proteins using the Westem blot analysis.Results:LUAD tissues showed higher DARS2 expression compared to normal tissues.Upregulation of DARS2 could be related to Tumor-Node-Metastasis(TNM)stage,high lymph node metastasis,and inferior prognosis.DARS2 silence decreased the proliferation,migration,and invasion abilities of LUAD cells.In addition,the DARS2 downregulation decreased the PCNA and N-cadherin expression and increased cleaved:caspase 3 and E cadherin expressions in LUAD cells,coupled with the inactivation of the PI3K/AKT signaling pathway.Moreover,DARS2 silence impaired the tumonigenicity of LUAD in vivo.Interestingly,let:7b-5p could recognize DARS2 through a complementary sequence.Mechanistically,the increased let 7b 5p expression attenuated the promo oncogenic action of DARS2 during LUAD progression,which were inversely correlated to each other in the LUAD tssues Conclusion:In summary,let 7b-5p,downregulated DARS2 expression,regulating the progression of LUAD cells by the PI3K/AKT signaling pathway.展开更多
Objective This study investigated the impact of occupational mercury(Hg) exposure on human gene transcription and expression, and its potential biological mechanisms.Methods Differentially expressed genes related to H...Objective This study investigated the impact of occupational mercury(Hg) exposure on human gene transcription and expression, and its potential biological mechanisms.Methods Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN lowexpression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA.Results Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model(25 and 10 μmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression.Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels.Conclusion This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelia...Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelial(RPE)cell photooxidative damage needs further exploration.We investigated the effects of C3G on blue light-irradiated A2E-containing RPE cells and explored whether sphingolipid,mitogen-activated protein kinase(MAPK),and mitochondria-mediated pathways are involved in this mechanism.Blue light irradiation led to mitochondria and lysosome damage in RPE cells,whereas C3G preserved mitochondrial morphology and function and maintained the lysosomal integrity.C3G suppressed the phosphorylation of JNK and p38 MAPK and mitochondria-mediated pathways to inhibit RPE cell apoptosis.Lipidomics data showed that C3G protected RPE cells against blue light-induced lipid peroxidation and apoptosis by maintaining sphingolipids balance.C3G significantly inhibited ceramide(Cer d18:0/15:0,Cer d18:0/16:0 and Cer d18:0/18:0)accumulation and elevated galactosylceramide(GalCer d18:1/15:0 and GalCer d18:1/16:0)levels in the irradiated A2E-containing RPE cells.Furthermore,C3G attenuated cell membrane damage by increasing phosphatidylcholine and phosphatidylserine levels.C3G inhibited apoptosis and preserved the structure of mitochondria and lysosome by regulating sphingolipid signaling and suppression of MAPK activation in RPE cells.Thus,dietary supplementation of C3G prevents retinal photooxidative damage.展开更多
Background:Nonalcoholic fatty liver disease(NAFLD)is a global health concern with the acid sphingomyelinase(ASM)/ceramide(CE)pathway and the NOD-like receptor family,pyrin domain-containing protein 3(NLRP3)inflammasom...Background:Nonalcoholic fatty liver disease(NAFLD)is a global health concern with the acid sphingomyelinase(ASM)/ceramide(CE)pathway and the NOD-like receptor family,pyrin domain-containing protein 3(NLRP3)inflammasome identified as pivotal players in lipid disorders and inflammation.This study explores the interaction mechanism between the ASM/CE pathway and NLRP3 in NAFLD cell models,aiming to understand the impact of amitriptyline(Ami),an ASM inhibitor,on lipid deposition and hepatocyte injury by regulating the ASM/CE-NLRP3 pathway.Methods:HepG2 and HL-7702 cells were exposed to free fatty acids(FFAs)to establish the NAFLD model.The cells were divided into 5 groups:control group,model group,Ami group,tumor necrosis factoralpha(TNF-α)group,and Ami+TNF-αgroup.Intracellular lipid droplets were visualized using Oil Red O staining,and Western blot analysis quantified ASM,NLRP3,and caspase 1 protein expression.Enzyme linked immunosorbent assay(ELISA)was measured CE and ASM levels,while qRT-PCR assessed mRNA expression.The apoptotic rate was evaluated by flow cytometry(FCM).Results:Following FFAs incubation,significant increases in ASM and CE levels were observed in HepG2 and HL-7702 cells,accompanied by elevated expression of NLRP3,and caspase 1,and IL-1β.TNF-αtreatment further amplified these indicators.Ami demonstrated a reduction in lipid deposition,suppressed ASM/CE pathway activation,downregulated NLRP3 and caspase 1 expression,and improved apoptosis.Additionally,MCC950,a selective inhibitor of the NLRP3,mitigated NLRP3,caspase 1,and IL-1βexpression,alleviating lipid deposition and apoptosis in the NAFLD cell model.Conclusion:The ASM/CE-NLRP3 pathway in NAFLD cells promotes hepatocyte steatosis,inflammation,and cell damage.Ami emerges as a promising therapeutic agent by inhibiting the ASM/CE-NLRP3 pathway,underscoring its potential as a key target for NAFLD treatment.展开更多
We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effec...We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.展开更多
Decidual natural killer (dNK) cells actively participate in the establishment and maintenance of maternal-fetal immune tolerance and act as local guardians against infection. However, how dNK cells maintain the immu...Decidual natural killer (dNK) cells actively participate in the establishment and maintenance of maternal-fetal immune tolerance and act as local guardians against infection. However, how dNK cells maintain the immune balance between tolerance and anti-infection immune responses during pregnancy remains unknown. Here, we demonstrated that the inhibitory molecule T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) are expressed on over 60% of dNK cells. Tim-3^+ dNK cells display higher interleukin (IL)-4 and lower tumor necrosis factor (TNF)-α and perforin production. Human trophoblast cells can induce the transformation of peripheral NK cells into a dNK-like phenotype via the secretion of galectin-9 (Gal-9) and the interaction between Gal-9 and Tim-3. In addition, trophoblasts inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokine and perforin production by dNK cells, which can be attenuated by Tim-3 neutralizing antibodies. Interestingly, a decreased percentage of Tim-3-expressing dNK cells were observed in human miscarriages and murine abortion-prone models. Moreover, T helper (Th)2-type cytokines were decreased and Thl-type cytokines were increased in Tim-3^+ but not Tim-3- dNK cells from human and mouse miscarriages. Therefore, our results suggest that the Gal-9/Tim-3 signal is important for the regulation of dNK cell function, which is beneficial for the maintenance of a normal pregnancy.展开更多
T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been reported to participate in the pathogenesis of inflammatory diseases. However, whether Tim-3 is involved in hepatitis B virus (HBV) in...T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been reported to participate in the pathogenesis of inflammatory diseases. However, whether Tim-3 is involved in hepatitis B virus (HBV) infection remains unknown. Here, we studied the expression and function of Tim-3 in a hydrodynamics-based mouse model of HBV infection. A significant increase of Tim-3 expression on hepatic T lymphocytes, especially on CD8^+ T cells, was demonstrated in HBV model mice from day 7 to day 18. After Tim-3 knockdown by specific shRNAs, significantly increased IFN-γ production from hepatic CD8^+ T cells in HBV model mice was observed. Very interestingly, we found Tim-3 expression on CD8^+ T cells was higher in HBV model mice with higher serum anti-HBs production. Moreover, Tim-3 knockdown influenced anti-HBs production in vivo. Collectively, our data suggested that Tim-3 might act as a potent regulator of antiviral T-cell responses in HBV infection. Cellular & Molecular Immunology.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a promine...Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway.展开更多
Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:...Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,flow cytometry,and western blotting assays were carried out to assess cell viability,subG1 phase of the cell cycle,and apoptosis-related protein expression,respectively.Results:Ourfindings indicate that paclitaxel could inhibit cell viability and increase the expression of apoptotic markers,including plasma membrane blebbing and the cleavage of poly ADP-ribose polymerase in KOSC3 cells.Also,the treatment with paclitaxel remarkably elevated the percentage of the subG1 phase in KOSC3 cells.In addition,treatment with a pan-caspase inhibitor could recover paclitaxel-inhibited cell viability.Moreover,caspase-8,caspase-9,caspase-7,and BH3 interacting domain death agonist(Bid)were activated in paclitaxel-treated KOSC3 cells.Conclusions:Paclitaxel induced apoptosis through caspase cascade in KOSC3 cells.展开更多
Objective:To assess emotional fluctuations,physical and mental health status,and indicators closely related to red blood cells,such as RIO kinase 3(Riok3),MAX interactor 1(Mxi1),and microRNA 191(miR191),in participant...Objective:To assess emotional fluctuations,physical and mental health status,and indicators closely related to red blood cells,such as RIO kinase 3(Riok3),MAX interactor 1(Mxi1),and microRNA 191(miR191),in participants with different levels of red blood cells.Methods:Participants who underwent physical examinations at Dongfang Hospital between April and October 2019 were divided into healthy,blood deficiency,and anemia groups(30 individuals in the healthy and blood deficiency group respectively,and 13 in the anemia group).The physical and mental conditions of the participants were evaluated through questionnaires,and emotional fluctuations were assessed through an emotion-inducing experiment,in which participants watched video segments designed to induce specific emotions.Relative expression levels of miR191,Riok3,and Mxi1 from venous blood samples were also determined.Results:The main psychological factors identified in the anemia and blood deficiency groups were obsessive-compulsive symptoms,depression,anxiety,and other negative emotions.Relative gene expression levels indicated that miR191 was upregulated and Riok3 and Mxi1 were downregulated in both the blood deficiency and anemia groups.Regarding the emotional score of disgust on video stage,the main effect was significant(F=335.58,P<.001),which showed that watching the three videos caused participants to have a dominant emotion,and there is a difference on group(F=5.35,P=.01),with higher disgust scores in the anemia and blood deficiency groups.The symptoms of blood deficiency and anemia,such as weakness in limbs were significantly negatively correlated with Riok3 and Mxi1 expression(r=-0.38 and-0.31 respectively),but was significantly positively correlated with miR191 expression(r=0.29).Conclusion:We determined that a close relationship exists between red blood cell levels and emotional status.Our findings suggest that individuals with anemia and blood deficiency are more likely to experience psychological problems and negative emotions,particularly disgust.We also demonstrate that emotional regulation is related to mir191-Riok3-Mxi1 pathway activity,identifying these pathway components are potential targets for genetic therapies in combination with psychological therapy.展开更多
基金Natural Science Foundation of Anhui Province,No.2208085MH216Major Natural Science and Technology Project of Bengbu Medical College,No.2020byfy004Scientific Research Program of Anhui Provincial Health Commission,No.AHWJ2023BAc10028.
文摘BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.
基金support from the“111 program”of Ministry of Education of China and State Administration of Foreign Experts Affairs of China.
文摘BACKGROUND Uterine injury can cause uterine scarring,leading to a series of complications that threaten women’s health.Uterine healing is a complex process,and there are currently no effective treatments.Although our previous studies have shown that bone marrow mesenchymal stem cells(BMSCs)promote uterine damage repair,the underlying mechanisms remain unclear.However,exploring the specific regulatory roles of BMSCs in uterine injury treatment is crucial for further understanding their functions and enhancing therapeutic efficacy.AIM To investigate the underlying mechanism by which BMSCs promote the process of uterine healing.METHODS In in vivo experiments,we established a model of full-thickness uterine injury and injected BMSCs into the uterine wound.Transcriptome sequencing was per-formed to determine the enrichment of differentially expressed genes at the wound site.In in vitro experiments,we isolated rat uterine smooth muscle cells(USMCs)and cocultured them with BMSCs to observe the interaction between BMSCs and USMCs in the microenvironment.RESULTS We found that the differentially expressed genes were mainly related to cell growth,tissue repair,and angiogenesis,while the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)pathway was highly enriched.Quantitative reverse-transcription polymerase chain reaction was used to validate differentially expressed genes,and the results demonstrated that BMSCs can upregulate genes related to regeneration and downregulate genes related to inflammation.Coculturing BMSCs promoted the migration and proliferation of USMCs,and the USMC microenvironment promoted the myogenic differentiation of BMSCs.Finally,we validated the PI3K/AKT pathway in tissues and cells and showed that BMSCs activate the PI3K/AKT pathway to promote the regeneration of uterine smooth muscle both in vivo and in vitro.CONCLUSION BMSCs upregulated uterine wound regeneration and anti-inflammatory factors and enhanced uterine smooth muscle proliferation through the PI3K/AKT pathway both in vivo and in vitro.
基金Supported by Xi’an Science and Technology Plan Project,No.23YXYJ0162Shaanxi Province Traditional Chinese Medicine Research and Innovation Talent Plan Project,No.TZKN-CXRC-16+2 种基金Project of Shaanxi Administration of Traditional Chinese Medicine,No.SZYKJCYC-2025-JC-010Shaanxi Province Key Research and Development Plan Project-Social Development Field,No.S2025-YF-YBSF-0391the Science and Technology Innovation Cultivation Program of Longhua Hospital affiliated to Shanghai University of Chinese Medicine,No.YD202220。
文摘BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa B(NF-κB)signaling pathway,and exacerbate the inflammatory response,thus participating in the pathogenesis of ulcerative colitis(UC).Mesalazine is a commonly used drug in the clinical treatment of UC.However,further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells,downregulates the STAT3/NF-κB pathway to play a role in the treatment of UC.AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10(IL-10)-/-mice.METHODS The 24-week-old IL-10-/-mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group.Littermates of wild-type mice of the same age group served as the control.There were eight mice in each group,four males and four females.The severity of symptoms of spontaneous colitis in IL-10-/-mice was assessed using disease activity index scores.On day 15,the mice were sacrificed.The colon length was measured,and the histopathological changes and ultrastructure of colonic epithelial cells were detected.The protein expressions of STAT3,p-STAT3,NF-κB,IκB,p-IκB,and glucoseregulated protein 78 were identified using Western blotting.The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction.The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence.RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues,and alleviated the ER stress in epithelial cells of colitis mice.Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated,suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target.Mesalazine could down-regulate the protein expressions of p-STAT3,NF-κB and p-IκB,and down-regulate the mRNA expression of STAT3 and NF-κB.CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway.
基金Supported by National Natural Science Foundation of China,No.82205025,No.82374355 and No.82174293Subject of Jiangsu Province Hospital of Chinese Medicine,No.Y21023Forth Batch of Construction Program for Inheritance Office of Jiangsu Province Famous TCM Experts,No.[2021]7.
文摘BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
文摘Background:The aberrant intraellular expression of a mitochondrial aspartyl tRNA synthetase 2(DARS2)has been reported in human cancers.Nevertheless its critical role and detailed mechanism in lung adenocarcinoma(LUAD)remain unexplored.Methods:Initially,The Cancer Genome Atlas(TCGA)based Gene Expression Profiling Interactive Analysis(GEPIA)database (http:/gepia.cancer-pku.cn/)was used to analyze the prognostic relevance of DARS2 expression in LUAD.Further,cell counting kit(CCK)8,immunostaining,and transwell invasion assays in LUAD cell lines in vitro,as well as DARS2 silence on LUAD by tumorigenicity experiments in wivo in nude mice,were performed.Besides,we analyzed the expression levels of p-PI3K(phosphorylated Phosphotylinosital3 kinase),PI3K,AKT(Protein Kinase B),p-AKT(phosphorylated Protein Kinase B),PCNA(proliferating cell nudear antigen),cleaved-caspase 3,E cadherin,and N-cadherin proteins using the Westem blot analysis.Results:LUAD tissues showed higher DARS2 expression compared to normal tissues.Upregulation of DARS2 could be related to Tumor-Node-Metastasis(TNM)stage,high lymph node metastasis,and inferior prognosis.DARS2 silence decreased the proliferation,migration,and invasion abilities of LUAD cells.In addition,the DARS2 downregulation decreased the PCNA and N-cadherin expression and increased cleaved:caspase 3 and E cadherin expressions in LUAD cells,coupled with the inactivation of the PI3K/AKT signaling pathway.Moreover,DARS2 silence impaired the tumonigenicity of LUAD in vivo.Interestingly,let:7b-5p could recognize DARS2 through a complementary sequence.Mechanistically,the increased let 7b 5p expression attenuated the promo oncogenic action of DARS2 during LUAD progression,which were inversely correlated to each other in the LUAD tssues Conclusion:In summary,let 7b-5p,downregulated DARS2 expression,regulating the progression of LUAD cells by the PI3K/AKT signaling pathway.
基金supported by the Jiangsu Province’s Outstanding Medical Academic Leader Program [CXTDA2017029]the Jiangsu Provincial Key Medical Discipline [ZDXK202249].
文摘Objective This study investigated the impact of occupational mercury(Hg) exposure on human gene transcription and expression, and its potential biological mechanisms.Methods Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN lowexpression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA.Results Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model(25 and 10 μmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression.Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels.Conclusion This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金funded by the National Natural Science Foundation of China(31901698)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(2019QNRC001)。
文摘Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelial(RPE)cell photooxidative damage needs further exploration.We investigated the effects of C3G on blue light-irradiated A2E-containing RPE cells and explored whether sphingolipid,mitogen-activated protein kinase(MAPK),and mitochondria-mediated pathways are involved in this mechanism.Blue light irradiation led to mitochondria and lysosome damage in RPE cells,whereas C3G preserved mitochondrial morphology and function and maintained the lysosomal integrity.C3G suppressed the phosphorylation of JNK and p38 MAPK and mitochondria-mediated pathways to inhibit RPE cell apoptosis.Lipidomics data showed that C3G protected RPE cells against blue light-induced lipid peroxidation and apoptosis by maintaining sphingolipids balance.C3G significantly inhibited ceramide(Cer d18:0/15:0,Cer d18:0/16:0 and Cer d18:0/18:0)accumulation and elevated galactosylceramide(GalCer d18:1/15:0 and GalCer d18:1/16:0)levels in the irradiated A2E-containing RPE cells.Furthermore,C3G attenuated cell membrane damage by increasing phosphatidylcholine and phosphatidylserine levels.C3G inhibited apoptosis and preserved the structure of mitochondria and lysosome by regulating sphingolipid signaling and suppression of MAPK activation in RPE cells.Thus,dietary supplementation of C3G prevents retinal photooxidative damage.
基金supported by the Initial Scientific Research Fund of the Talents Introduced in Nanjing Lishui People’s Hospital(Project 2021YJ02).
文摘Background:Nonalcoholic fatty liver disease(NAFLD)is a global health concern with the acid sphingomyelinase(ASM)/ceramide(CE)pathway and the NOD-like receptor family,pyrin domain-containing protein 3(NLRP3)inflammasome identified as pivotal players in lipid disorders and inflammation.This study explores the interaction mechanism between the ASM/CE pathway and NLRP3 in NAFLD cell models,aiming to understand the impact of amitriptyline(Ami),an ASM inhibitor,on lipid deposition and hepatocyte injury by regulating the ASM/CE-NLRP3 pathway.Methods:HepG2 and HL-7702 cells were exposed to free fatty acids(FFAs)to establish the NAFLD model.The cells were divided into 5 groups:control group,model group,Ami group,tumor necrosis factoralpha(TNF-α)group,and Ami+TNF-αgroup.Intracellular lipid droplets were visualized using Oil Red O staining,and Western blot analysis quantified ASM,NLRP3,and caspase 1 protein expression.Enzyme linked immunosorbent assay(ELISA)was measured CE and ASM levels,while qRT-PCR assessed mRNA expression.The apoptotic rate was evaluated by flow cytometry(FCM).Results:Following FFAs incubation,significant increases in ASM and CE levels were observed in HepG2 and HL-7702 cells,accompanied by elevated expression of NLRP3,and caspase 1,and IL-1β.TNF-αtreatment further amplified these indicators.Ami demonstrated a reduction in lipid deposition,suppressed ASM/CE pathway activation,downregulated NLRP3 and caspase 1 expression,and improved apoptosis.Additionally,MCC950,a selective inhibitor of the NLRP3,mitigated NLRP3,caspase 1,and IL-1βexpression,alleviating lipid deposition and apoptosis in the NAFLD cell model.Conclusion:The ASM/CE-NLRP3 pathway in NAFLD cells promotes hepatocyte steatosis,inflammation,and cell damage.Ami emerges as a promising therapeutic agent by inhibiting the ASM/CE-NLRP3 pathway,underscoring its potential as a key target for NAFLD treatment.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (NRF2020R1A2C1014798 to E-K Kim)。
文摘We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.
文摘Decidual natural killer (dNK) cells actively participate in the establishment and maintenance of maternal-fetal immune tolerance and act as local guardians against infection. However, how dNK cells maintain the immune balance between tolerance and anti-infection immune responses during pregnancy remains unknown. Here, we demonstrated that the inhibitory molecule T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) are expressed on over 60% of dNK cells. Tim-3^+ dNK cells display higher interleukin (IL)-4 and lower tumor necrosis factor (TNF)-α and perforin production. Human trophoblast cells can induce the transformation of peripheral NK cells into a dNK-like phenotype via the secretion of galectin-9 (Gal-9) and the interaction between Gal-9 and Tim-3. In addition, trophoblasts inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokine and perforin production by dNK cells, which can be attenuated by Tim-3 neutralizing antibodies. Interestingly, a decreased percentage of Tim-3-expressing dNK cells were observed in human miscarriages and murine abortion-prone models. Moreover, T helper (Th)2-type cytokines were decreased and Thl-type cytokines were increased in Tim-3^+ but not Tim-3- dNK cells from human and mouse miscarriages. Therefore, our results suggest that the Gal-9/Tim-3 signal is important for the regulation of dNK cell function, which is beneficial for the maintenance of a normal pregnancy.
基金supported in part by grants from the National Nature Science Foundation of China (No. 30670966)the National Basic Research Program (No. 2009CB521900)+1 种基金the Taishan Scholar Programthe Scientific Foundation of Innovative Research Team in Shandong University.
文摘T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been reported to participate in the pathogenesis of inflammatory diseases. However, whether Tim-3 is involved in hepatitis B virus (HBV) infection remains unknown. Here, we studied the expression and function of Tim-3 in a hydrodynamics-based mouse model of HBV infection. A significant increase of Tim-3 expression on hepatic T lymphocytes, especially on CD8^+ T cells, was demonstrated in HBV model mice from day 7 to day 18. After Tim-3 knockdown by specific shRNAs, significantly increased IFN-γ production from hepatic CD8^+ T cells in HBV model mice was observed. Very interestingly, we found Tim-3 expression on CD8^+ T cells was higher in HBV model mice with higher serum anti-HBs production. Moreover, Tim-3 knockdown influenced anti-HBs production in vivo. Collectively, our data suggested that Tim-3 might act as a potent regulator of antiviral T-cell responses in HBV infection. Cellular & Molecular Immunology.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
基金supported by the National Natural Science Foundation of China(Grant No.:82074092),Natural Science Foundation of Guangdong Province,China(Grant No.:2021A1515012219)Guangzhou University of Chinese Medicine“Double First-Class”and High-level University Discipline Collaborative Innovation Team Project,China(Grant No.:2021xk81) and Graduate Research Innovation Project of Guangzhou University of Chinese Medicine,China.
文摘Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway.
基金The present study was supported by the National Science and Technology Council,Taiwan(MOST-107-2320-B-471-001 to YYL and MOST-110-2320-B-006-025-MY3 to BMH)by An Nan Hospital(ANHRF111-55 to TCC and BMH).
文摘Background:Paclitaxel is a compound derived from Pacific yew bark that induces various cancer cell apoptosis.However,whether it also has anticancer activities in KOSC3 cells,an oral cancer cell line,is unclear.Methods:3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,flow cytometry,and western blotting assays were carried out to assess cell viability,subG1 phase of the cell cycle,and apoptosis-related protein expression,respectively.Results:Ourfindings indicate that paclitaxel could inhibit cell viability and increase the expression of apoptotic markers,including plasma membrane blebbing and the cleavage of poly ADP-ribose polymerase in KOSC3 cells.Also,the treatment with paclitaxel remarkably elevated the percentage of the subG1 phase in KOSC3 cells.In addition,treatment with a pan-caspase inhibitor could recover paclitaxel-inhibited cell viability.Moreover,caspase-8,caspase-9,caspase-7,and BH3 interacting domain death agonist(Bid)were activated in paclitaxel-treated KOSC3 cells.Conclusions:Paclitaxel induced apoptosis through caspase cascade in KOSC3 cells.
基金supported by the National Natural Science Foundation of China(81674100).
文摘Objective:To assess emotional fluctuations,physical and mental health status,and indicators closely related to red blood cells,such as RIO kinase 3(Riok3),MAX interactor 1(Mxi1),and microRNA 191(miR191),in participants with different levels of red blood cells.Methods:Participants who underwent physical examinations at Dongfang Hospital between April and October 2019 were divided into healthy,blood deficiency,and anemia groups(30 individuals in the healthy and blood deficiency group respectively,and 13 in the anemia group).The physical and mental conditions of the participants were evaluated through questionnaires,and emotional fluctuations were assessed through an emotion-inducing experiment,in which participants watched video segments designed to induce specific emotions.Relative expression levels of miR191,Riok3,and Mxi1 from venous blood samples were also determined.Results:The main psychological factors identified in the anemia and blood deficiency groups were obsessive-compulsive symptoms,depression,anxiety,and other negative emotions.Relative gene expression levels indicated that miR191 was upregulated and Riok3 and Mxi1 were downregulated in both the blood deficiency and anemia groups.Regarding the emotional score of disgust on video stage,the main effect was significant(F=335.58,P<.001),which showed that watching the three videos caused participants to have a dominant emotion,and there is a difference on group(F=5.35,P=.01),with higher disgust scores in the anemia and blood deficiency groups.The symptoms of blood deficiency and anemia,such as weakness in limbs were significantly negatively correlated with Riok3 and Mxi1 expression(r=-0.38 and-0.31 respectively),but was significantly positively correlated with miR191 expression(r=0.29).Conclusion:We determined that a close relationship exists between red blood cell levels and emotional status.Our findings suggest that individuals with anemia and blood deficiency are more likely to experience psychological problems and negative emotions,particularly disgust.We also demonstrate that emotional regulation is related to mir191-Riok3-Mxi1 pathway activity,identifying these pathway components are potential targets for genetic therapies in combination with psychological therapy.