期刊文献+
共找到1,794篇文章
< 1 2 90 >
每页显示 20 50 100
Parameterized time-frequency analysis to separate multi-radar signals 被引量:1
1
作者 Wenlong Lu Junwei Xie +1 位作者 Heming Wang Chuan Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期493-502,共10页
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ... Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation. 展开更多
关键词 intercepted multi-radar signal parameterized time-frequency analysis DEMODULATION adaptive filtering
下载PDF
Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals 被引量:2
2
作者 Elias Ebrahimzadeh Mohammad Pooyan 《Journal of Biomedical Science and Engineering》 2011年第11期699-706,共8页
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v... Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%. 展开更多
关键词 SUDDEN CARDIAC DEATH Heart Rate Variability time-frequency Transform ELECTROCARDIOGRAM signal Linear Processing
下载PDF
Cyclic-Auto-Correlation Based Timing Estimation Algorithm for Time-Frequency Overlapping Multi-Carrier Signals
3
作者 Xing Zhang Jian-Hao Hu 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第3期223-233,共11页
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research... In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications. 展开更多
关键词 Cyclic auto-correlation orthogonal frequency division multiplexing(OFDM) time-frequency overlapping signal timing estimation
下载PDF
Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features 被引量:1
4
作者 N.Kins Burk Sunil R.Ganesan B.Sankaragomathi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期351-375,共25页
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ... Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO. 展开更多
关键词 OBSTRUCTIVE sleep APNEA photoplethysmogram signal time DOMAIN FEATURES frequency DOMAIN FEATURES classification and regression tree CLASSIFIER particle swarm optimization algorithm.
下载PDF
Experimental validation of a signal-based approach for structural earthquake damage detection using fractal dimension of time frequency feature 被引量:2
5
作者 Tao Dongwang Mao Chenxi +1 位作者 Zhang Dongyu Li Hui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期671-680,共10页
This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resis... This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach. 展开更多
关键词 earthquake damage detection time frequency feature fractal dimension signal-based shaking table test frictional damper
下载PDF
Analysis of frequency shifting in seismic signals using Gabor-Wigner transform 被引量:1
6
作者 Roshan Kumar P.Sumathi Ashok Kumar 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期715-724,共10页
A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor trans... A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection. 展开更多
关键词 time-frequency distribution seismic signals cross-term interference Gabor transform Wigner- Ville distribution Gabor-Wigner transform
下载PDF
A Recursive Method of Time-Frequency Analysis for the Signal Processing of Flutter Test with Progression Variable Speed 被引量:1
7
作者 宋叔飚 裴承鸣 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第3期213-217,共5页
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr... Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method. 展开更多
关键词 flutter test with progression variable speed (FTPVS) non-stationary signal processing recursive time-frequency analysis (RTFA)
下载PDF
Parameters Analysis of Gastric Motility Signals in Time Domain and Frequency Domain
8
作者 Zhangyong Li Likun Xu Zhui Xu 《Journal of Life Sciences》 2012年第1期14-19,共6页
In order to assess gastric motility, a new noninvasive method was addressed. Firstly, bio-impedance and stomach electric signals were recorded from the healthy control group and the pathologic stomach group. Wavelet t... In order to assess gastric motility, a new noninvasive method was addressed. Firstly, bio-impedance and stomach electric signals were recorded from the healthy control group and the pathologic stomach group. Wavelet transform was used to remove the influence of the heart activity signals. By analyzing and processing the two signals of the time domain and frequency domain, we get the corresponding parameters of the two groups. According to all the parameters, several verification tests have been carried out, from the result of the statistics, we can find that in both time and frequency domains, impedance signal and synchronize EGG (electrogastrogram) have some similar features. However synchronize EGG cannot be totally instead by gastric motility, especially in morbid state, EGG is not correspondence to impedance signal. The gastric contraction or gastric emptying is a complex procedure including electrical and mechanical activity. Electrical impedance (EIP) and the synchronous EGG should be analyzed together. In conclusion, the parameters have the value to evaluate gastric motility. 展开更多
关键词 Gastric motility signals wavelet transform time domain frequency domain.
下载PDF
Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
9
作者 Abdullah Ali Alshehri 《Journal of Signal and Information Processing》 2012年第3期339-343,共5页
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t... Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments. 展开更多
关键词 signal Segmentation time-frequency Distribution Short-time FOURIER TRANSFORM NON-STATIONARY WIENER MASKING
下载PDF
Time-Frequency Entropy Analysis of Arc Signal in Non-Stationary Submerged Arc Welding
10
作者 Kuanfang He Siwen Xiao +1 位作者 Jigang Wu Guanbin Wang 《Engineering(科研)》 2011年第2期105-109,共5页
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ... The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach. 展开更多
关键词 NON-STATIONARY signal SUBMERGED ARC Welding time-frequency ENTROPY Stability
下载PDF
Applications of Fractional Lower Order Time-frequency Representation to Machine Bearing Fault Diagnosis 被引量:4
11
作者 Junbo Long Haibin Wang +1 位作者 Peng Li Hongshe Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期734-750,共17页
The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful ... The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances. 展开更多
关键词 adaptive function Alpha stable distribution auto-regressive(AR) model non-stationary signal parameter estimation time frequency representation
下载PDF
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
12
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 time-frequency analysis Gabor atom time-shear Adaptive signal decomposition time-frequency distribution.
下载PDF
Time-Varying Bandpass Filter Based on Assisted Signals for AM-FM Signal Separation: A Revisit 被引量:1
13
作者 Guanlei Xu Xiaotong Wang +2 位作者 Xiaogang Xu Lijia Zhou Limin Shao 《Journal of Signal and Information Processing》 2013年第3期229-242,共14页
In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose freq... In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose frequencies have overlapped regions in Fourier transform domain and even have crossed points in time-frequency distribution (TFD) so that the proposed TVBF seems like a “soft-cutter” that cuts the frequency domain to snaky slices with rational physical sense. First, the Hilbert transform based decomposition is analyzed for the analysis of nonstationary signals. Based on the above analysis, a hypothesis under a certain condition that AM-FM components can be separated successfully based on Hilbert transform and the assisted signal is developed, which is supported by representative experiments and theoretical performance analyses on a error bound that is shown to be proportional to the product of frequency width and noise variance. The assisted signals are derived from the refined time-frequency distributions via image fusion and least squares optimization. Experiments on man-made and real-life data verify the efficiency of the proposed method and demonstrate the advantages over the other main methods. 展开更多
关键词 time-VARYING BANDPASS Filter (TVBF) HILBERT Tranform ASSISTED signal AM-FM Component time-frequency Distribution (TFD)
下载PDF
A NEW QUADRATIC TIME-FREQUENCY DISTRIBUTIONAND A COMPARATIVE STUDY OF SEVERAL POPULARQUADRATIC TIME-FREQUENCY DISTRIBUTIONS
14
作者 Liu Guizhong Liu Zhimei(information Engineering Institute, Xi’an Jiaotong University, Xi’an 710049) 《Journal of Electronics(China)》 1997年第2期104-111,共8页
A new quadratic time-frequency distribution (TFD) with a compound kernel is proposed and a comparative study of several popular quadratic TFD is carried out. It is shown that the new TFD with compound kernel has stron... A new quadratic time-frequency distribution (TFD) with a compound kernel is proposed and a comparative study of several popular quadratic TFD is carried out. It is shown that the new TFD with compound kernel has stronger ability than the exponential distribution (ED) and the cone-shaped kernel distribution (CKD) in reducing cross terms, meanwhile almost not decreasing the time-frequency resolution of ED or CKD. 展开更多
关键词 signal processing time-frequency analysis time-frequency distribution of Cohen’s CLASS
下载PDF
IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS:TIME-FREQUENCY FILTERING AND SKELETON CURVES
15
作者 王丽丽 张景绘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第2期210-219,共10页
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define... The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique. 展开更多
关键词 system identification nonlinear dynamic system non-stationary signal time-frequency analysis Hilbert transform
下载PDF
Analysis of RF Feedback Chain Isolation in Wireless Co-Time Co-Frequency Full Duplex
16
作者 Juan Zhou Ying Shen +1 位作者 Ya-Juan Xue Li Li 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第3期280-286,共7页
By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect R... By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect RF feedback chain isolation usually damages the self-interference cancelation(SIC) performance. To deal with this problem, firstly, we analyze the impact of RF feedback chain isolation on SIC performance. Then a digital preprocessing scheme with RF feedback chain is proposed in the multiple-antenna CCFD architecture. Using both analytical and experimental methods, we find that the proposed scheme achieves a better performance on SIC. 展开更多
关键词 Co-time co-frequency full duplex full duplex radio frequency feedback chain isolation radio frequency leakage signal self-interference cancellation
下载PDF
Network Sorting Algorithm of Multi-Frequency Signal with Adaptive SNR
17
作者 Xinyong Yu Ying Guo +2 位作者 Kunfeng Zhang Lei Li Hongguang Li 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期206-212,共7页
An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformat... An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformation in the system and a sorting model is established under undetermined condition; then the SNR adaptive pivot threshold setting method is used to find the TF single source. The mixed matrix is estimated according to the TF matrix of single source. Lastly,signal sorting is realized through improved subspace projection combined with relative power deviation of source. Theoretical analysis and simulation results showthat this algorithm has good effectiveness and performance. 展开更多
关键词 frequency-hopping(FH) under-determined adaptive signal noise ratio(SNR) time-frequency(TF) signal source network sorting
下载PDF
Application of Local Wave Time-Frequency Spectrum and Neural Networks to Fault Classification in Rotating Machine
18
作者 HAOZhi-hua MAXiao-jiang 《International Journal of Plant Engineering and Management》 2005年第1期36-41,共6页
A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to pro... A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor). 展开更多
关键词 signal classification neural network local wave empirical modedecomposition time-frequency representation
下载PDF
Application of Wavelet Packet De-noising in Time-Frequency Analysis of the Local Wave Method
19
作者 LI Hong kun, MA Xiao jiang, WANG Zhen, ZHU Hong Institute of Vibration Engineering, Dalian University of Technology, Dalian 116024, P.R.China 《International Journal of Plant Engineering and Management》 2003年第4期233-238,共6页
The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noi... The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noising method can eliminate the interference ofnoise and improve the signal-noise-ratio. This paper uses the local wave method to decompose thede-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally,an example of wavelet packet de-noising and a local wave time-frequency spectrum application ofdiesel engine surface vibration signal is put forward. 展开更多
关键词 local wave time-frequency analysis wavelet packet DE-NOISING signal-noise-ratio
下载PDF
Parameter estimation of LFM signals based on time reversal 被引量:1
20
作者 MA Xinjie QI Wei +1 位作者 CHE Kaijun WU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期674-681,共8页
In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propa... In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB). 展开更多
关键词 linear frequency modulation(LFM)signal time reversal Cramer-Rao lower bound(CRLB) parameter estimation
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部