To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
在Matlab/Simulink中应用Real-Time Windows Target模块重构状态观测器的实时仿真模型,采用该方法开发的实验系统既便于实现,又能和实际物理系统良好对接,有利于学生掌握状态观测器的相关知识和促进对Matlab的了解和应用。给出的应用实...在Matlab/Simulink中应用Real-Time Windows Target模块重构状态观测器的实时仿真模型,采用该方法开发的实验系统既便于实现,又能和实际物理系统良好对接,有利于学生掌握状态观测器的相关知识和促进对Matlab的了解和应用。给出的应用实例验证了方法的可行性。展开更多
Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP p...Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP parameters from admission to DCITW following aneurysmal subarachnoid hemorrhage.Methods Eighty patients underwent CTP at admission and during DCITW.The mean and extreme values of all CTP parameters at admission and during DCITW were compared between the DCI group and non-DCI group,and comparisons were also made between admission and DCITW within each group.The qualitative color-coded perfusion maps were recorded.Finally,the relationship between CTP parameters and DCI was assessed by receiver operating characteristic(ROC)analyses.Results With the exception of cerebral blood volume(P=0.295,admission;P=0.682,DCITW),there were significant differences in the mean quantitative CTP parameters between DCI and non-DCI patients both at admission and during DCITW.In the DCI group,the extreme parameters were significantly different between admission and DCITW.The DCI group also showed a deteriorative trend in the qualitative color-coded perfusion maps.For the detection of DCI,mean transit time to the center of the impulse response function(Tmax)at admission and mean time to start(TTS)during DCITW had the largest area under curve(AUC),0.698 and 0.789,respectively.Conclusion Whole-brain CTP can predict the occurrence of DCI at admission and diagnose DCI during DCITW.The extreme quantitative parameters and qualitative color-coded perfusion maps can better reflect the perfusion changes of patients with DCI from admission to DCITW.展开更多
The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizi...The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.展开更多
In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function...In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function . For each node , a time window ?within which the node may be visited and ?, is non-negative of the service and leaving time of the node. A source node s, a destination node d and a departure time?t0, the time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at a departure time t0;and minimizes the total arrival time at a destination node d. This formulation generalizes the classical shortest path problem in which ce are constants. Our algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3].展开更多
Consensus of creativity research suggests that the measurement of both originality and valuableness is necessary when designing creativity tasks.However,few studies have emphasized valuableness when exploring underlyi...Consensus of creativity research suggests that the measurement of both originality and valuableness is necessary when designing creativity tasks.However,few studies have emphasized valuableness when exploring underlying neural substrates of creative thinking.The present study employs product-based creativity tasks that measure both originality and valuableness in an exploration of the dynamic relationship between the default mode(DMN),executive control(ECN),and salience(SN)networks through time windows.This methodology highlights relevance,or valuableness,in creativity evaluation as opposed to divergent thinking tasks solely measuring originality.The researchers identified seven brain regions belonging to the ECN,DMN,and SN as regions of interest(ROIs),as well as four representative seeds to analyze functional connectivity in 25 college student participants.Results showed that all of the identified ROIs were involved during the creative task.The insula,precuneus,and ventrolateral prefrontal cortex(vlPFC)remained active across all stages of product-based creative thinking.Moreover,the connectivity analyses revealed varied interaction patterns of DMN,ECN,and SN at different thinking stages.The integrated findings of the whole brain,ROI,and connectivity analyses suggest a trend that the DMN and SN(which relate to bottom-up thinking)attenuate as time proceeds,whereas the vlPFC(which relates to top-down thinking)gets stronger at later stages;these findings reflect the nature of our creativity tasks and decision-making of valuableness in later stages.Based on brain region activation throughout execution of the task,we propose that product-based creative process may include three stages:exploration and association,incubation and insight,and finally,evaluation and decision making.This model provides a thinking frame for further research and classroom instruction.展开更多
Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variabl...Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.展开更多
The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The sol...The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational results are then reported. The computational study underscores the importance of integrating the inventory and vehicle routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with dive...The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.展开更多
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金supported by the National Natural Science Foundation of China,Research on Brain Magnetic Resonance Image Segmentation Based on Particle Computation(No.61672386).
文摘Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP parameters from admission to DCITW following aneurysmal subarachnoid hemorrhage.Methods Eighty patients underwent CTP at admission and during DCITW.The mean and extreme values of all CTP parameters at admission and during DCITW were compared between the DCI group and non-DCI group,and comparisons were also made between admission and DCITW within each group.The qualitative color-coded perfusion maps were recorded.Finally,the relationship between CTP parameters and DCI was assessed by receiver operating characteristic(ROC)analyses.Results With the exception of cerebral blood volume(P=0.295,admission;P=0.682,DCITW),there were significant differences in the mean quantitative CTP parameters between DCI and non-DCI patients both at admission and during DCITW.In the DCI group,the extreme parameters were significantly different between admission and DCITW.The DCI group also showed a deteriorative trend in the qualitative color-coded perfusion maps.For the detection of DCI,mean transit time to the center of the impulse response function(Tmax)at admission and mean time to start(TTS)during DCITW had the largest area under curve(AUC),0.698 and 0.789,respectively.Conclusion Whole-brain CTP can predict the occurrence of DCI at admission and diagnose DCI during DCITW.The extreme quantitative parameters and qualitative color-coded perfusion maps can better reflect the perfusion changes of patients with DCI from admission to DCITW.
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
基金the Program of “Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System” funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.
文摘In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function . For each node , a time window ?within which the node may be visited and ?, is non-negative of the service and leaving time of the node. A source node s, a destination node d and a departure time?t0, the time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at a departure time t0;and minimizes the total arrival time at a destination node d. This formulation generalizes the classical shortest path problem in which ce are constants. Our algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3].
文摘Consensus of creativity research suggests that the measurement of both originality and valuableness is necessary when designing creativity tasks.However,few studies have emphasized valuableness when exploring underlying neural substrates of creative thinking.The present study employs product-based creativity tasks that measure both originality and valuableness in an exploration of the dynamic relationship between the default mode(DMN),executive control(ECN),and salience(SN)networks through time windows.This methodology highlights relevance,or valuableness,in creativity evaluation as opposed to divergent thinking tasks solely measuring originality.The researchers identified seven brain regions belonging to the ECN,DMN,and SN as regions of interest(ROIs),as well as four representative seeds to analyze functional connectivity in 25 college student participants.Results showed that all of the identified ROIs were involved during the creative task.The insula,precuneus,and ventrolateral prefrontal cortex(vlPFC)remained active across all stages of product-based creative thinking.Moreover,the connectivity analyses revealed varied interaction patterns of DMN,ECN,and SN at different thinking stages.The integrated findings of the whole brain,ROI,and connectivity analyses suggest a trend that the DMN and SN(which relate to bottom-up thinking)attenuate as time proceeds,whereas the vlPFC(which relates to top-down thinking)gets stronger at later stages;these findings reflect the nature of our creativity tasks and decision-making of valuableness in later stages.Based on brain region activation throughout execution of the task,we propose that product-based creative process may include three stages:exploration and association,incubation and insight,and finally,evaluation and decision making.This model provides a thinking frame for further research and classroom instruction.
文摘Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.
文摘The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational results are then reported. The computational study underscores the importance of integrating the inventory and vehicle routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem.
文摘依据FFT→优化窗→IFFT思路,突破线性时频变换的窗函数积分性能桎梏,实现高性能优化窗函数的线性时频变换应用,建立新型时频变换算法——K-S变换.对信号x(t)的FFT频谱向量进行频移处理后,与该频移点下Kaiser优化窗的频谱向量进行Hadamard乘积,再将乘积结果进行FFT逆变换(IFFT),构造出K-S变换复时频矩阵,由此获得x(t)的时间-频率-幅值、时间-频率-相位三维信息;给出逆变换的数学推导与局部性质、线性性质和变分辨率特性;0~150 kHz电网的稳态与时变超谐波信号仿真实验表明,K-S变换的时域、频域分辨能力均优于流行的短时傅里叶变换、S变换,具有优良的变分辨率性能;0~40 kHz超谐波信号的实测证明,基于K-S变换的超谐波电压幅值测量绝对误差均小于0.032 3 V.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金supported by the National Key R&D Program of China(2018AAA0101203)the National Natural Science Foundation of China(61673403,71601191)the JSPS KAKENHI(JP17K12751)。
文摘The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.