In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic r...In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic research on short-term heavy precipitation events in Shanxi Province. Based on hourly precipitation data during the flood season (May to September) from 109 meteorological stations in Shanxi, China in 1980-2015, the temporal and spatial variation characteristics of short-time heavy rainfall during the flood season are analyzed by using wavelet analysis and Mann-Kendall test. The results show that the short-time heavy rainfall in the flood season in Shanxi Province is mainly at the grade of 20 - 30 mm/h, with an average of 97 stations having short-time heavy rainfall each year, accounting for 89% of the total stations. The short-time heavy rainfall mainly concentrated in July and August, and the maximal rain intensity in history appeared at 23 - 24 on June 17, 1991 in Yongji, Shanxi is 91.7 mm/h. During the flood season, the short-time heavy rainfalls always occur at 16 - 18 pm, and have slightly different concentrated time in different months. The main peaks of June, July and August are at 16, 17 and 18 respectively, postponed for one hour. Short-time heavy rainfall overall has the distribution that the south is more than the north and the east less than the west in Shanxi area. In the last 36 years, short-time heavy rainfall has a slight increasing trend in Shanxi, but not significant. There is a clear 4-year period of oscillation and inter-decadal variation. It has a good correlation between the total precipitation and times of short-time heavy rainfall during the flood season.展开更多
This paper presents a new method of detecting multi-periodicities in a seasonal time series. Conventional methods such as the average power spectrum or the autocorrelation function plot have been used in detecting mul...This paper presents a new method of detecting multi-periodicities in a seasonal time series. Conventional methods such as the average power spectrum or the autocorrelation function plot have been used in detecting multiple periodicities. However, there are numerous cases where those methods either fail, or lead to incorrectly detected periods. This, in turn in applications, produces improper models and results in larger forecasting errors. There is a strong need for a new approach to detecting multi-periodicities. This paper tends to fill this gap by proposing a new method which relies on a mathematical instrument, called the Average Power Function of Noise (APFN) of a time series. APFN has a prominent property that it has a strict local minimum at each period of the time series. This characteristic helps one in detecting periods in time series. Unlike the power spectrum method where it is assumed that the time series is composed of sinusoidal functions of different frequencies, in APFN it is assumed that the time series is periodic, the unique and a much weaker assumption. Therefore, this new instrument is expected to be more powerful in multi-periodicity detection than both the autocorrelation function plot and the average power spectrum. Properties of APFN and applications of the new method in periodicity detection and in forecasting are presented.展开更多
Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urg...Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.展开更多
文摘In order to provide a reference for the correct forecasting of short-term heavy rainfall and better disaster prevention and mitigation services in Shanxi Province, China, it is very important to carry out systematic research on short-term heavy precipitation events in Shanxi Province. Based on hourly precipitation data during the flood season (May to September) from 109 meteorological stations in Shanxi, China in 1980-2015, the temporal and spatial variation characteristics of short-time heavy rainfall during the flood season are analyzed by using wavelet analysis and Mann-Kendall test. The results show that the short-time heavy rainfall in the flood season in Shanxi Province is mainly at the grade of 20 - 30 mm/h, with an average of 97 stations having short-time heavy rainfall each year, accounting for 89% of the total stations. The short-time heavy rainfall mainly concentrated in July and August, and the maximal rain intensity in history appeared at 23 - 24 on June 17, 1991 in Yongji, Shanxi is 91.7 mm/h. During the flood season, the short-time heavy rainfalls always occur at 16 - 18 pm, and have slightly different concentrated time in different months. The main peaks of June, July and August are at 16, 17 and 18 respectively, postponed for one hour. Short-time heavy rainfall overall has the distribution that the south is more than the north and the east less than the west in Shanxi area. In the last 36 years, short-time heavy rainfall has a slight increasing trend in Shanxi, but not significant. There is a clear 4-year period of oscillation and inter-decadal variation. It has a good correlation between the total precipitation and times of short-time heavy rainfall during the flood season.
文摘This paper presents a new method of detecting multi-periodicities in a seasonal time series. Conventional methods such as the average power spectrum or the autocorrelation function plot have been used in detecting multiple periodicities. However, there are numerous cases where those methods either fail, or lead to incorrectly detected periods. This, in turn in applications, produces improper models and results in larger forecasting errors. There is a strong need for a new approach to detecting multi-periodicities. This paper tends to fill this gap by proposing a new method which relies on a mathematical instrument, called the Average Power Function of Noise (APFN) of a time series. APFN has a prominent property that it has a strict local minimum at each period of the time series. This characteristic helps one in detecting periods in time series. Unlike the power spectrum method where it is assumed that the time series is composed of sinusoidal functions of different frequencies, in APFN it is assumed that the time series is periodic, the unique and a much weaker assumption. Therefore, this new instrument is expected to be more powerful in multi-periodicity detection than both the autocorrelation function plot and the average power spectrum. Properties of APFN and applications of the new method in periodicity detection and in forecasting are presented.
文摘Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.