In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. ...In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. The tasks of noise reduction and parameter estimation which were fulfilled separately before are combined iteratively. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior work can be viewed as special cases of this general framework. The simulations for noise reduction and parameter estimation of contaminated chaotic time series show improved performance of our method compared with previous work.展开更多
Bilinear time series models are of importance to nonlinear time seriesanalysis.In this paper,the autocovariance function and the relation between linearand general bilinear time series models are derived.With the help...Bilinear time series models are of importance to nonlinear time seriesanalysis.In this paper,the autocovariance function and the relation between linearand general bilinear time series models are derived.With the help of Volterra seriesexpansion,the impulse response function and frequency characteristic function of thegeneral bilinear time series model are also derived.展开更多
A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochast...A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (10-year) environmental planning and decision making.展开更多
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr...Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ...This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.展开更多
Any change in technical or environmental conditions of observations may result in bias from the precise values of observed climatic variables. The common name of these biases is inhomogeneity (IH). IHs usually appear ...Any change in technical or environmental conditions of observations may result in bias from the precise values of observed climatic variables. The common name of these biases is inhomogeneity (IH). IHs usually appear in a form of sudden shift or gradual trends in the time series of any variable, and the timing of the shift indicates the date of change in the conditions of observation. The seasonal cycle of radiation intensity often causes marked seasonal cycle in the IHs of observed temperature time series, since a substantial portion of them has direct or indirect connection to radiation changes in the micro-environment of the thermometer. Therefore the magnitudes of temperature IHs tend to be larger in summer than in winter. A new homogenisation method (ACMANT) has recently been developed which treats in a special way the seasonal changes of IH-sizes in temperature time series. The ACMANT is a further development of the Caussinus-Mestre method, that is one of the most effective tool among the known homogenising methods. The ACMANT applies a bivariate test for searching the timings of IHs, the two variables are the annual mean temperature and the amplitude of seasonal temperature-cycle. The ACMANT contains several further innovations whose efficiencies are tested with the benchmark of the COST ES0601 project. The paper describes the properties and the operation of ACMANT and presents some verification results. The results show that the ACMANT has outstandingly high performance. The ACMANT is a recommended method for homogenising networks of monthly temperature time series that observed in mid- or high geographical latitudes, because the harmonic seasonal cycle of IH-size is valid for these time series only.展开更多
We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by u...We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.展开更多
The kinetic model of the four-post-frame lifting mechanical system was established. The stiffness and damping matrices of differential equations of motion were obtained by using Lagrange’s equations. And the dynamic ...The kinetic model of the four-post-frame lifting mechanical system was established. The stiffness and damping matrices of differential equations of motion were obtained by using Lagrange’s equations. And the dynamic characteristics of system were analyzed by modal analysis method. Based upon this, the modifications of structural parameters which can improve dynamic performance were discussed. The low-level high-speed palletizer MDJ1200L was taken as a real case in the paper.展开更多
This article is devoted to a time series prediction scheme involving the nonlinear autoregressive algorithm and its applications. The scheme is implemented by means of an artificial neural network containing a hidden ...This article is devoted to a time series prediction scheme involving the nonlinear autoregressive algorithm and its applications. The scheme is implemented by means of an artificial neural network containing a hidden layer. As a training algorithm we use scaled conjugate gradient (SCG) method and the Bayesian regularization (BReg) method. The first method is applied to time series without noise, while the second one can also be applied for noisy datasets. We apply the suggested scheme for prediction of time series arising in oil and gas pricing using 50 and 100 past values. Results of numerical simulations are presented and discussed.展开更多
文摘In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. The tasks of noise reduction and parameter estimation which were fulfilled separately before are combined iteratively. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior work can be viewed as special cases of this general framework. The simulations for noise reduction and parameter estimation of contaminated chaotic time series show improved performance of our method compared with previous work.
文摘Bilinear time series models are of importance to nonlinear time seriesanalysis.In this paper,the autocovariance function and the relation between linearand general bilinear time series models are derived.With the help of Volterra seriesexpansion,the impulse response function and frequency characteristic function of thegeneral bilinear time series model are also derived.
基金This research was supported by the Ministry of Science and Technology of China,National Basic Research Program of China (Grant No.2010CB951504).The authors acknowledge support from the Flemish Interuniversity Council,the Ghent University Laboratory of Soil Science for the writing of this paper
文摘A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (10-year) environmental planning and decision making.
基金supported by the National Natural Science Foundation of China(Grant No.51579193)the Science and Technology Planning Project of Guizhou Province(Grant No.[2016]1154)
文摘Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
基金Project (Nos. 60174009 and 70071017) supported by the NationalNatural Science Foundation of China
文摘This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.
文摘Any change in technical or environmental conditions of observations may result in bias from the precise values of observed climatic variables. The common name of these biases is inhomogeneity (IH). IHs usually appear in a form of sudden shift or gradual trends in the time series of any variable, and the timing of the shift indicates the date of change in the conditions of observation. The seasonal cycle of radiation intensity often causes marked seasonal cycle in the IHs of observed temperature time series, since a substantial portion of them has direct or indirect connection to radiation changes in the micro-environment of the thermometer. Therefore the magnitudes of temperature IHs tend to be larger in summer than in winter. A new homogenisation method (ACMANT) has recently been developed which treats in a special way the seasonal changes of IH-sizes in temperature time series. The ACMANT is a further development of the Caussinus-Mestre method, that is one of the most effective tool among the known homogenising methods. The ACMANT applies a bivariate test for searching the timings of IHs, the two variables are the annual mean temperature and the amplitude of seasonal temperature-cycle. The ACMANT contains several further innovations whose efficiencies are tested with the benchmark of the COST ES0601 project. The paper describes the properties and the operation of ACMANT and presents some verification results. The results show that the ACMANT has outstandingly high performance. The ACMANT is a recommended method for homogenising networks of monthly temperature time series that observed in mid- or high geographical latitudes, because the harmonic seasonal cycle of IH-size is valid for these time series only.
文摘We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.
文摘The kinetic model of the four-post-frame lifting mechanical system was established. The stiffness and damping matrices of differential equations of motion were obtained by using Lagrange’s equations. And the dynamic characteristics of system were analyzed by modal analysis method. Based upon this, the modifications of structural parameters which can improve dynamic performance were discussed. The low-level high-speed palletizer MDJ1200L was taken as a real case in the paper.
文摘This article is devoted to a time series prediction scheme involving the nonlinear autoregressive algorithm and its applications. The scheme is implemented by means of an artificial neural network containing a hidden layer. As a training algorithm we use scaled conjugate gradient (SCG) method and the Bayesian regularization (BReg) method. The first method is applied to time series without noise, while the second one can also be applied for noisy datasets. We apply the suggested scheme for prediction of time series arising in oil and gas pricing using 50 and 100 past values. Results of numerical simulations are presented and discussed.