To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in c...To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.展开更多
How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a thre...How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a three-stage mixed model is proposed for bus arrival time prediction. The first stage is pattern training. In this stage,the traffic delay jitter patterns(TDJP)are mined by K nearest neighbor and K-means in the historical traffic time data. The second stage is the single-step prediction,which is based on real-time adjusted Kalman filter with a modification of historical TDJP. In the third stage,as the influence of historical law is increasing in long distance prediction,we combine the single-step prediction dynamically with Markov historical transfer model to conduct the multi-step prediction. The experimental results show that the proposed single-step prediction model performs better in accuracy and efficiency than short-term traffic flow prediction and dynamic Kalman filter. The multi-step prediction provides a higher level veracity and reliability in travel time forecasting than short-term traffic flow and historical traffic pattern prediction models.展开更多
A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The prin...A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.展开更多
The accurate prediction of travel time along roadway provides valuable traffic information for travelers and traffic managers. Aiming at short-term travel time forecasting on urban arterials,a prediction model( PSOSVM...The accurate prediction of travel time along roadway provides valuable traffic information for travelers and traffic managers. Aiming at short-term travel time forecasting on urban arterials,a prediction model( PSOSVM) combining support vector machine( SVM) and particle swarm optimization( PSO) is developed. Travel time data collected with Bluetooth devices are used to calibrate the proposed model. Field experiments show that the PSO-SVM model 's error indicators are lower than the single SVM model and the BP neural network( BPNN) model. Particularly,the mean-absolute percentage error( MAPE) of PSO-SVM is only 9. 453 4 %which is less than that of the single SVM model( 12. 230 2 %) and the BPNN model( 15. 314 7 %). The results indicate that the proposed PSO-SVM model is feasible and more effective than other models for shortterm travel time prediction on urban arterials.展开更多
Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a mac...Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.展开更多
Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instance...Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instances are the main factors that affect the accuracy of the remaining time prediction.Existing prediction methods does not take full advantage of these two aspects into consideration.To address this issue,a new prediction method based on trace representation is proposed.More specifically,we first associate the prefix set generated by the event log to different states of the transition system,and encode the structural features of the prefixes in the state.Then,an annotation containing the feature representation for the prefix and the corresponding remaining time are added to each state to obtain an extended transition system.Next,states in the extended transition system are partitioned by the different lengths of the states,which considers concurrency among multiple process instances.Finally,the long short-term memory(LSTM)deep recurrent neural networks are applied to each partition for predicting the remaining time of new running instances.By extensive experimental evaluation using synthetic event logs and reallife event logs,we show that the proposed method outperforms existing baseline methods.展开更多
Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where info...Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.展开更多
In online programming education,if teachers can determine any difficulties their students are experiencing and provide support,it would significantly improve the outcome of their teaching.This paper describes an attem...In online programming education,if teachers can determine any difficulties their students are experiencing and provide support,it would significantly improve the outcome of their teaching.This paper describes an attempt to build a time prediction model on the demand for personalized affective support based on a modified version of the Synthetic Minority Over-sampling Technique.We designed and conducted a data collection experiment based on the specific features of the affective support.Meanwhile,the modified oversampling algorithm can ascertain the time for providing such support for learners,which solves the problem of a class imbalance distribution.In addition,we obtained a sorting algorithm of the time prediction regarding the demand for personalized affective support in programming learning and constructed a time prediction model on the demand for affective support.Meanwhile,we conducted experiments on both public data and our own collected data to verify the effectiveness of the constructed model.The results show that the model is able to judge whether learners need affective support during the writing code process.展开更多
This paper analyses the melting process of an ice layer formed on an aerial conductor. It is found that the melting process consists of two distinct phases: the ice surrounding the conductor (the first regime) and the...This paper analyses the melting process of an ice layer formed on an aerial conductor. It is found that the melting process consists of two distinct phases: the ice surrounding the conductor (the first regime) and the conductor cutting through the top of the ice shell (the second regime). The formula obtained in this paper to predict the melting time is different from those commonly used.展开更多
Since the 20 thcentury,the time intervals of M ≥6.7 strong earthquakes in the SichuanYunnan region show obvious regularity.Using the years of the strong events,a twodimensional time coordinate system is generated,bas...Since the 20 thcentury,the time intervals of M ≥6.7 strong earthquakes in the SichuanYunnan region show obvious regularity.Using the years of the strong events,a twodimensional time coordinate system is generated,based on which,the time prediction model is constructed for strong earthquakes in the Sichuan-Yunnan region.Prediction analysis shows that there is risk of generating four earthquakes with M ≥ 6.7 in the Sichuan-Yunnan region in the future 16 years,and there are strong signals for M ≥6.7earthquakes for periods 2012-2021 and 2025-2029.The strong earthquakes may occur around 2014-2015,2019 and 2027.展开更多
With the widespread use of information technologies such as IoT and big data in the transportation business,traditional passenger transportation has begun to transition and upgrade into intelligent transportation,prov...With the widespread use of information technologies such as IoT and big data in the transportation business,traditional passenger transportation has begun to transition and upgrade into intelligent transportation,providing passengers with a better riding experience.Giving precise bus arrival times is a critical link in achieving urban intelligent transportation.As a result,a mixed model-based bus arrival time prediction model(RHMX)was suggested in this work,which could dynamically forecast bus arrival time based on the input data.First,two sub-models were created:bus station stopping time prediction and interstation running time prediction.The former predicted the stopping time of a running bus at each downstream station in an iterative manner,while the latter projected its running time on each downstream road segment(stations as the break points).Using the two models,a group of time series data on interstation running time and bus station stopping time may be predicted.Following that,the time series data from the two sub-models was fused using long short-term memory(LSTM)to generate an approximate bus arrival time.Finally,using Kalman filtering,the LSTM prediction results were dynamically updated in order to eliminate the influence of aberrant data on the anticipated value and obtain a more precise bus arrival time.The experimental findings showed that the suggested model's accuracy and stability were both improved by 35%and 17%,respectively,over AutoNavi and Baidu.展开更多
It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of ...It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear...Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and freq...Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and frequency transfer. A robust equivalent weight is applied, which controls the significant influence of outlying observations. Some conclusions show that the prediction precision of robust estimation is better than that of LS. The prediction precision calculated from smoothed observations is higher than that calculated from sampling observations. As a count of the obvious period variations in the clock deviation sequence, the predicted values of polynomial model are implausible. The prediction precision of spectral analysis model is very low, but the principal periods can be determined. The prediction RMS of 6-hour extrapolation interval is Ins or so, when modified AR model is used.展开更多
In harsh climates,highway icing poses a hazard to traffic safety and increases road maintenance costs.It is of great significance to predict when the highway icing may occur and take a preventive plan.However,there ar...In harsh climates,highway icing poses a hazard to traffic safety and increases road maintenance costs.It is of great significance to predict when the highway icing may occur and take a preventive plan.However,there are few studies on highway icing time prediction due to the scarcity and complexity of data.In this study,variables of icing temperature,friction,ice percentage,road surface temperature,water film height,saline concentration,and road condition were collected by road sensors distributed on a highway in China.A large-scale time series highway surface information dataset called HighwayIce is formed.Furthermore,a deep learning approach called IceAlarm,composed of long short-term memory neural network(LSTM),multilayer perceptron(MLP),and residual connection,has been developed to predict when the highway will ice.The LSTM is used to process dynamic variables,the MLP is used to process static variables,and the fully-connected layers with residual connections are used to make a deep fusion.The experimental results show that the average mean absolute error before icing using the IceAlarm model is about 6min and outperforms all baseline models.The HighwayIce dataset and IceAlarm model can help improve the prediction accuracy and efficiency of forecasting real-world road icing time,therefore reducing the impact of icy road conditions on traffic.展开更多
Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance para...Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance parameters have been discussed. New time and cost prediction models have been depicted. The multivariate linear regression has been used to make the parameters more precise, which are the key factor to affect the prediction near to the reality.展开更多
Accurate travel time prediction is undoubtedlyof importance to both traffic managers and travelers. Inhighly-urbanized areas, trip-oriented travel time prediction(TOTTP) is valuable to travelers rather than trafficm...Accurate travel time prediction is undoubtedlyof importance to both traffic managers and travelers. Inhighly-urbanized areas, trip-oriented travel time prediction(TOTTP) is valuable to travelers rather than trafficmanagers as the former usually expect to know the traveltime of a trip which may cross over multiple road sections.There are two obstacles to the development of TOTTP,including traffic complexity and traffic data coverage. Withlarge scale historical vehicle trajectory data and meteorol-ogy data, this research develops a BPNN-based approachthrough integrating multiple factors affecting trip traveltime into a BPNN model to predict trip-oriented travel timefor OD pairs in urban network. Results of experimentsdemonstrate that it helps discover the dominate trends oftravel time changes daily and weekly, and the impact ofweather conditions is non-trivial.展开更多
The navigation software uses the positioning system to determine the traffic conditions of the road sections in advance,so as to predict the travel time of the road sections.However,in the case of traffic congestion,t...The navigation software uses the positioning system to determine the traffic conditions of the road sections in advance,so as to predict the travel time of the road sections.However,in the case of traffic congestion,the accuracy of its prediction time is low.After empirical analysis,this paper establishes a multi-factor synthesis by studying 7 factors:traffic flow,number of stops,traffic light duration,road network density,average speed,road area,and number of intersections the prediction function achieves the purpose of accurately predicting the transit time of congested road sections.The gray correlation coefficients of the seven factors obtained from the gray correlation analysis are:0.9827,0.9679,0.6747,0.8030,0.9445,0.8759,0.4328.The correlation coefficients of traffic volume,number of stops,average speed,and road congestion delay time were all about 95%,which were the main influencing factors of the study.The prediction needs to be based on functions.This paper fits the main influencing factors to the delay time of congested roads.It is found that the delay time varies parabolically with the traffic flow and the number of stops,and linearly with the average speed.Because the three impact factors have different weights on the delay time of congested roads,demand takes the weight of each factor.Therefore,the gray correlation coefficients occupied by the main influencing factors are normalized to obtain the weights of three of 0.340,0.334,and 0.326.The weighted fitting function is subjected to nonlinear summation processing to obtain a multi-factor comprehensive prediction function.By comparing the original data with the fitting data and calculating the accuracy of the fitting function,it is found that the accuracy of each fitting function is close to 0,the residual error,the relative error is small,and the accuracy is high.展开更多
基金The National Natural Science Foundation of China(No.51478114,51778136)
文摘To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.
基金National Science and Technology Major Project(2016ZX03001025-003)Special Found for Beijing Common Construction Project
文摘How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a three-stage mixed model is proposed for bus arrival time prediction. The first stage is pattern training. In this stage,the traffic delay jitter patterns(TDJP)are mined by K nearest neighbor and K-means in the historical traffic time data. The second stage is the single-step prediction,which is based on real-time adjusted Kalman filter with a modification of historical TDJP. In the third stage,as the influence of historical law is increasing in long distance prediction,we combine the single-step prediction dynamically with Markov historical transfer model to conduct the multi-step prediction. The experimental results show that the proposed single-step prediction model performs better in accuracy and efficiency than short-term traffic flow prediction and dynamic Kalman filter. The multi-step prediction provides a higher level veracity and reliability in travel time forecasting than short-term traffic flow and historical traffic pattern prediction models.
文摘A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.
基金Sponsored by the National Natural Science Foundation of China(Grant No.71101109)
文摘The accurate prediction of travel time along roadway provides valuable traffic information for travelers and traffic managers. Aiming at short-term travel time forecasting on urban arterials,a prediction model( PSOSVM) combining support vector machine( SVM) and particle swarm optimization( PSO) is developed. Travel time data collected with Bluetooth devices are used to calibrate the proposed model. Field experiments show that the PSO-SVM model 's error indicators are lower than the single SVM model and the BP neural network( BPNN) model. Particularly,the mean-absolute percentage error( MAPE) of PSO-SVM is only 9. 453 4 %which is less than that of the single SVM model( 12. 230 2 %) and the BPNN model( 15. 314 7 %). The results indicate that the proposed PSO-SVM model is feasible and more effective than other models for shortterm travel time prediction on urban arterials.
基金Sponsored by the Transportation Science and Technology Planning Project of Henan Province,China(Grant No.2019G-2-2).
文摘Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.
基金supported by National Natural Science Foundation of China(No.U1931207 and No.61702306)Sci.&Tech.Development Fund of Shandong Province of China(No.ZR2019LZH001,No.ZR2017BF015 and No.ZR2017MF027)+4 种基金the Humanities and Social Science Research Project of the Ministry of Education(No.18YJAZH017)Shandong Chongqing Science and technology cooperation project(No.cstc2020jscx-lyjsAX0008)Sci.&Tech.Development Fund of Qingdao(No.21-1-5-zlyj-1-zc)the Taishan Scholar Program of Shandong ProvinceSDUST Research Fund(No.2015TDJH102 and No.2019KJN024).
文摘Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instances are the main factors that affect the accuracy of the remaining time prediction.Existing prediction methods does not take full advantage of these two aspects into consideration.To address this issue,a new prediction method based on trace representation is proposed.More specifically,we first associate the prefix set generated by the event log to different states of the transition system,and encode the structural features of the prefixes in the state.Then,an annotation containing the feature representation for the prefix and the corresponding remaining time are added to each state to obtain an extended transition system.Next,states in the extended transition system are partitioned by the different lengths of the states,which considers concurrency among multiple process instances.Finally,the long short-term memory(LSTM)deep recurrent neural networks are applied to each partition for predicting the remaining time of new running instances.By extensive experimental evaluation using synthetic event logs and reallife event logs,we show that the proposed method outperforms existing baseline methods.
文摘Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.
基金supported by the 2018-2020 Higher Education Talent Training Quality and Teaching Reform Project of Sichuan Province(Grant No.JG2018-46)the Science and Technology Planning Program of Sichuan University and Luzhou(Grant No.2017CDLZG30)the Postdoctoral Science fund of Sichuan University(Grant No.2019SCU12058).
文摘In online programming education,if teachers can determine any difficulties their students are experiencing and provide support,it would significantly improve the outcome of their teaching.This paper describes an attempt to build a time prediction model on the demand for personalized affective support based on a modified version of the Synthetic Minority Over-sampling Technique.We designed and conducted a data collection experiment based on the specific features of the affective support.Meanwhile,the modified oversampling algorithm can ascertain the time for providing such support for learners,which solves the problem of a class imbalance distribution.In addition,we obtained a sorting algorithm of the time prediction regarding the demand for personalized affective support in programming learning and constructed a time prediction model on the demand for affective support.Meanwhile,we conducted experiments on both public data and our own collected data to verify the effectiveness of the constructed model.The results show that the model is able to judge whether learners need affective support during the writing code process.
文摘This paper analyses the melting process of an ice layer formed on an aerial conductor. It is found that the melting process consists of two distinct phases: the ice surrounding the conductor (the first regime) and the conductor cutting through the top of the ice shell (the second regime). The formula obtained in this paper to predict the melting time is different from those commonly used.
文摘Since the 20 thcentury,the time intervals of M ≥6.7 strong earthquakes in the SichuanYunnan region show obvious regularity.Using the years of the strong events,a twodimensional time coordinate system is generated,based on which,the time prediction model is constructed for strong earthquakes in the Sichuan-Yunnan region.Prediction analysis shows that there is risk of generating four earthquakes with M ≥ 6.7 in the Sichuan-Yunnan region in the future 16 years,and there are strong signals for M ≥6.7earthquakes for periods 2012-2021 and 2025-2029.The strong earthquakes may occur around 2014-2015,2019 and 2027.
基金Guilin Scientific Research and Technology Development Plan(2020010304).
文摘With the widespread use of information technologies such as IoT and big data in the transportation business,traditional passenger transportation has begun to transition and upgrade into intelligent transportation,providing passengers with a better riding experience.Giving precise bus arrival times is a critical link in achieving urban intelligent transportation.As a result,a mixed model-based bus arrival time prediction model(RHMX)was suggested in this work,which could dynamically forecast bus arrival time based on the input data.First,two sub-models were created:bus station stopping time prediction and interstation running time prediction.The former predicted the stopping time of a running bus at each downstream station in an iterative manner,while the latter projected its running time on each downstream road segment(stations as the break points).Using the two models,a group of time series data on interstation running time and bus station stopping time may be predicted.Following that,the time series data from the two sub-models was fused using long short-term memory(LSTM)to generate an approximate bus arrival time.Finally,using Kalman filtering,the LSTM prediction results were dynamically updated in order to eliminate the influence of aberrant data on the anticipated value and obtain a more precise bus arrival time.The experimental findings showed that the suggested model's accuracy and stability were both improved by 35%and 17%,respectively,over AutoNavi and Baidu.
基金supported by National Key Research and Development Program of China(2019YFC0605300)the National Natural Science Foundation of China(61873299,61902022,61972028)+2 种基金Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(BK21BF002)Macao Science and Technology Development Fund under Macao Funding Scheme for Key R&D Projects(0025/2019/AKP)Macao Science and Technology Development Fund(0015/2020/AMJ)。
文摘It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
基金funded by the Natural Science Foundation of Fujian Province,China (Grant No.2022J05291)Xiamen Scientific Research Funding for Overseas Chinese Scholars.
文摘Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金Supported by the National Natural Science Foundations of China (No. 40474001, No. 40274002, No. 40604003).
文摘Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and frequency transfer. A robust equivalent weight is applied, which controls the significant influence of outlying observations. Some conclusions show that the prediction precision of robust estimation is better than that of LS. The prediction precision calculated from smoothed observations is higher than that calculated from sampling observations. As a count of the obvious period variations in the clock deviation sequence, the predicted values of polynomial model are implausible. The prediction precision of spectral analysis model is very low, but the principal periods can be determined. The prediction RMS of 6-hour extrapolation interval is Ins or so, when modified AR model is used.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.2020JBM265)the Beijing Natural Science Foundation (Grant No.3222016)+2 种基金the National Natural Science Foundation of China (Grant No.62103035)the China Postdoctoral Science Foundation(Grant No.2021M690337)the Beijing Laboratory for Urban Mass Transit (Grant No.353203535)。
文摘In harsh climates,highway icing poses a hazard to traffic safety and increases road maintenance costs.It is of great significance to predict when the highway icing may occur and take a preventive plan.However,there are few studies on highway icing time prediction due to the scarcity and complexity of data.In this study,variables of icing temperature,friction,ice percentage,road surface temperature,water film height,saline concentration,and road condition were collected by road sensors distributed on a highway in China.A large-scale time series highway surface information dataset called HighwayIce is formed.Furthermore,a deep learning approach called IceAlarm,composed of long short-term memory neural network(LSTM),multilayer perceptron(MLP),and residual connection,has been developed to predict when the highway will ice.The LSTM is used to process dynamic variables,the MLP is used to process static variables,and the fully-connected layers with residual connections are used to make a deep fusion.The experimental results show that the average mean absolute error before icing using the IceAlarm model is about 6min and outperforms all baseline models.The HighwayIce dataset and IceAlarm model can help improve the prediction accuracy and efficiency of forecasting real-world road icing time,therefore reducing the impact of icy road conditions on traffic.
文摘Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance parameters have been discussed. New time and cost prediction models have been depicted. The multivariate linear regression has been used to make the parameters more precise, which are the key factor to affect the prediction near to the reality.
文摘Accurate travel time prediction is undoubtedlyof importance to both traffic managers and travelers. Inhighly-urbanized areas, trip-oriented travel time prediction(TOTTP) is valuable to travelers rather than trafficmanagers as the former usually expect to know the traveltime of a trip which may cross over multiple road sections.There are two obstacles to the development of TOTTP,including traffic complexity and traffic data coverage. Withlarge scale historical vehicle trajectory data and meteorol-ogy data, this research develops a BPNN-based approachthrough integrating multiple factors affecting trip traveltime into a BPNN model to predict trip-oriented travel timefor OD pairs in urban network. Results of experimentsdemonstrate that it helps discover the dominate trends oftravel time changes daily and weekly, and the impact ofweather conditions is non-trivial.
文摘The navigation software uses the positioning system to determine the traffic conditions of the road sections in advance,so as to predict the travel time of the road sections.However,in the case of traffic congestion,the accuracy of its prediction time is low.After empirical analysis,this paper establishes a multi-factor synthesis by studying 7 factors:traffic flow,number of stops,traffic light duration,road network density,average speed,road area,and number of intersections the prediction function achieves the purpose of accurately predicting the transit time of congested road sections.The gray correlation coefficients of the seven factors obtained from the gray correlation analysis are:0.9827,0.9679,0.6747,0.8030,0.9445,0.8759,0.4328.The correlation coefficients of traffic volume,number of stops,average speed,and road congestion delay time were all about 95%,which were the main influencing factors of the study.The prediction needs to be based on functions.This paper fits the main influencing factors to the delay time of congested roads.It is found that the delay time varies parabolically with the traffic flow and the number of stops,and linearly with the average speed.Because the three impact factors have different weights on the delay time of congested roads,demand takes the weight of each factor.Therefore,the gray correlation coefficients occupied by the main influencing factors are normalized to obtain the weights of three of 0.340,0.334,and 0.326.The weighted fitting function is subjected to nonlinear summation processing to obtain a multi-factor comprehensive prediction function.By comparing the original data with the fitting data and calculating the accuracy of the fitting function,it is found that the accuracy of each fitting function is close to 0,the residual error,the relative error is small,and the accuracy is high.